Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T06:51:26.988Z Has data issue: false hasContentIssue false

Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave

Published online by Cambridge University Press:  27 July 2010

Q. X. WANG*
Affiliation:
School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
J. R. BLAKE
Affiliation:
School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
*
Email address for correspondence: wangqx@maths.bham.ac.uk

Abstract

Micro-cavitation bubbles generated by ultrasound have wide and important applications in medical ultrasonics and sonochemistry. An approximate theory is developed for nonlinear and non-spherical bubbles in a compressible liquid by using the method of matched asymptotic expansions. The perturbation is performed to the second order in terms of a small parameter, the bubble-wall Mach number. The inner flow near the bubble can be approximated as incompressible at the first and second orders, leading to the use of Laplace's equation, whereas the outer flow far away from the bubble can be described by the linear wave equation, also for the first and second orders. Matching between the two expansions provides the model for the non-spherical bubble behaviour in a compressible fluid. A numerical model using the mixed Eulerian–Lagrangian method and a modified boundary integral method is used to obtain the evolving bubble shapes. The primary advantage of this method is its computational efficiency over using the wave equation throughout the fluid domain. The numerical model is validated against the Keller–Herring equation for spherical bubbles in weakly compressible liquids with excellent agreement being obtained for the bubble radius evolution up to the fourth oscillation. Numerical analyses are further performed for non-spherical oscillating acoustic bubbles. Bubble evolution and jet formation are simulated. Outputs also include the bubble volume, bubble displacement, Kelvin impulse and liquid jet tip velocity. Bubble behaviour is studied in terms of the wave frequency and amplitude. Particular attention is paid to the conditions if/when the bubble jet is formed and when the bubble becomes multiply connected, often forming a toroidal bubble. When subjected to a weak acoustic wave, bubble jets may develop at the two poles of the bubble surface after several cycles of oscillations. A resonant phenomenon occurs when the wave frequency is equal to the natural oscillation frequency of the bubble. When subjected to a strong acoustic wave, a vigorous liquid jet develops along the direction of wave propagation in only a few cycles of the acoustic wave.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.Google Scholar
Benjamin, T. B. & Ellis, A. T. 1966 The collapse of cavitation bubbles and pressure thereby produced against solid boundary. Phil. Trans. R. Soc. Lond. A 260, 221240.Google Scholar
Best, J. P. 1993 The formation of toroidal bubbles upon collapse of transient cavities. J. Fluid Mech. 251, 79107.CrossRefGoogle Scholar
Best, J. P. & Blake, J. R. 1994 An estimate of the Kelvin impulse of a transient cavity. J. Fluid Mech. 261, 7593.CrossRefGoogle Scholar
Best, J. P. & Kucera, A. 1992 A numerical investigation of non-spherical rebounding bubbles. J. Fluid Mech. 245, 137.CrossRefGoogle Scholar
Blake, J. R. 1988 The Kelvin impulse: application to cavitation bubble dynamics. J. Aust. Math. Soc. Ser. B 30, 127146.CrossRefGoogle Scholar
Blake, J. R. & Gibson, D. C. 1981 Growth and collapse of a vapour cavity near a free surface. J. Fluid Mech. 111, 123.CrossRefGoogle Scholar
Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19, 99123.CrossRefGoogle Scholar
Blake, J. R., Hooton, M. C., Robinson, P. B. & Tong, R. P. 1997 Collapsing cavities, toroidal bubbles and jet impact. Phil. Trans. R. Soc. Lond. A 355, 537550.CrossRefGoogle Scholar
Blake, J. R., Keen, G. S., Tong, R. P. & Wilson, M. 1999 Acoustic cavitation: the fluid dynamics of non-spherical bubbles. Phil. Trans. R. Soc. Lond. A 357, 251267.CrossRefGoogle Scholar
Blake, J. R., Taib, B. B. & Doherty, G. 1986 Transient cavities near boundaries. Part 1. Rigid boundary. J. Fluid Mech. 170, 479.CrossRefGoogle Scholar
Blake, J. R., Taib, B. B. & Doherty, G. 1987 Transient cavities near boundaries. Part 2. Free surface. J. Fluid Mech. 181, 197.CrossRefGoogle Scholar
Brennen, C. E. 1995 Cavitation and Bubble Dynamics. Oxford University Press (available online).CrossRefGoogle Scholar
Brennen, C. E. 2002 Fission of collapsing cavitation bubbles. J. Fluid Mech. 472, 153166.CrossRefGoogle Scholar
Brenner, M. P., Hilgenfeldt, S. & Lohse, D. 2002 Single-bubble sonoluminescence. Rev. Mod. Phys. 74, 425484.CrossRefGoogle Scholar
Brujan, E. A., Keen, G. S., Vogel, A. & Blake, J. R. 2002 The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 14 (1), 85.CrossRefGoogle Scholar
Calvisi, M. L., Iloreta, J. I. & Szeri, A. J. 2008 Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 2. Reflected shock intensifies non-spherical cavitation collapse. J. Fluid Mech. 616, 6397.CrossRefGoogle Scholar
Calvisi, M. L., Lindau, O., Blake, J. R. & Szeri, A. J. 2007 Shape stability and violent collapse of microbubbles in acoustic traveling waves. Phys. Fluids 19 (4), 047101.CrossRefGoogle Scholar
Chahine, G. L. & Bovis, A. 1980 Oscillation and collapse of a cavitation bubble in the vicinity of a two-liquid interface. In Cavitation and Inhomogeneities in Underwater Acoustics, pp. 2329. Springer.CrossRefGoogle Scholar
Chahine, G. L. & Perdue, T. O. 1988 Simulation of the three-dimensional behaviour of an unsteady large bubble near a structure. In Proceedings of the Third International Colloquium on Drops and Bubbles, Monterey, CA.Google Scholar
Cole, R. H. 1948 Underwater Explosions. Princeton University Press.CrossRefGoogle Scholar
Day, C. 2005 Targeted ultrasound mediates the delivery of therapeutic genes to heart muscle. Phys. Today December 22–23.CrossRefGoogle Scholar
Delale, C. F. & Tunc, M. 2004 A bubble fission model for collapsing cavitation bubbles. Phys. Fluids 16 (11), 42004203.CrossRefGoogle Scholar
Doinikov, A. A. 2004 Translational motion of a bubble undergoing shape oscillations. J. Fluid Mech. 501, 124.CrossRefGoogle Scholar
Epstein, D. & Keller, J. B. 1971 Expansion and contraction of planar, cylindrical, and spherical underwater gas bubbles. J. Acoust. Soc. Am. 52, 977980.Google Scholar
Feng, Z. C. & Leal, L. G. 1997 Nonlinear bubble dynamics. Annu. Rev. Fluid Mech. 29, 201243.CrossRefGoogle Scholar
Fujikawa, S. & Akamatsu, T. 1980 Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. J. Fluid Mech. 97, 481512.CrossRefGoogle Scholar
Guerri, L., Lucca, G. & Prosperetti, A. 1981 A numerical method for the dynamics of non-spherical cavitation bubbles. In Proceedings of the Second International Colloquium on Drops and Bubbles, p. 175. California.Google Scholar
Hastings, C. 1955 Approximations for Digital Computers. Princeton University Press.CrossRefGoogle Scholar
Herring, C. 1941 The theory of the pulsations of the gas bubbles produced by an underwater explosion. US Nat. Defence Res. Comm. Report. Report No. 236.Google Scholar
Hua, J. & Lou, J. 2007 Numerical simulation of bubble rising in viscous liquid. J. Comput. Phys. 222 (2), 769795.CrossRefGoogle Scholar
Johnsen, E. & Colonius, T. 2009 Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231262.CrossRefGoogle ScholarPubMed
Keller, J. B. & Kolodner, I. I. 1956 Damping of underwater explosion bubble oscillations. J. Appl. Phys. 27 (10), 11521161.CrossRefGoogle Scholar
Keller, J. B. & Miksis, M. J. 1980 Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68, 628633.CrossRefGoogle Scholar
Klaseboer, E., Hung, K. C., Wang, C., Wang, C. W., Khoo, B. C., Boyce, P., Debono, S. & Charlier, H. 2005 Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure. J. Fluid Mech. 537, 387413.CrossRefGoogle Scholar
Klaseboer, E., Turangan, C. K., Khoo, B. C., Szeri, A. J., Calvisi, M. L., Sankin, G. N. & Zhong, P. 2007 Interaction of lithotripter shockwaves with single inertial cavitation bubbles. J. Fluid Mech. 593, 3356.CrossRefGoogle ScholarPubMed
Lauterborn, W. & Bolle, H. 1975 Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 72, 391399.CrossRefGoogle Scholar
Lee, M., Klaseboer, E. & Khoo, B. C. 2007 On the boundary integral method for the rebounding bubble. J. Fluid Mech. 570, 407429.CrossRefGoogle Scholar
Leighton, T. 1994 The Acoustic Bubble. Academic Press.Google Scholar
Lenoir, M. 1979 A calculation of the parameters of the high-speed jet formed in the collapse of a bubble. J. Appl. Mech. Tech. Phys. 20 (3), 333337.Google Scholar
Lezzi, A. & Prosperetti, A. 1987 Bubble dynamics in a compressible liquid. Part 2. Second-order theory. J. Fluid Mech. 185, 289321.CrossRefGoogle Scholar
Lindau, O. & Lauterborn, W. 2003 Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327348.CrossRefGoogle Scholar
Longuet-Higgins, M. S. & Cokelet, E. D. 1976 The deformation of steep surface waves on water. I. A numerical method of computation. Proc. R. Soc. Lond. A 350, 126.Google Scholar
Pearson, A., Blake, J. R. & Otto, S. R. 2004 a Jets in bubbles. J. Engng Math. 48 (3–4), 391412.CrossRefGoogle Scholar
Pearson, A., Cox, E., Blake, J. R. & Otto, S. R. 2004 b Bubble interactions near a free surface. Engng Anal. Bound. Elem. 28 (4), 295313.CrossRefGoogle Scholar
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.CrossRefGoogle Scholar
Plesset, M. S. & Prosperetti, A. 1977 Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145185.CrossRefGoogle Scholar
Prosperetti, A. & Lezzi, A. 1986 Bubble dynamics in a compressible liquid. Part 1. First-order theory. J. Fluid Mech. 168, 457478.CrossRefGoogle Scholar
Putterman, S. J. & Weninger, K. R. 2000 Sonoluminescence: how bubbles turn sound into light. Annu. Rev. Fluid Mech. 32, 445476.CrossRefGoogle Scholar
Rayleigh, Lord 1917 On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34, 9498.CrossRefGoogle Scholar
Reddy, A. J. & Szeri, A. J. 2002 Coupled dynamics of translation and collapse of acoustically driven microbubbles. J. Acoust. Soc. Am. 112 (4), 13461352.CrossRefGoogle ScholarPubMed
Shaw, S. J. 2006 Translation and oscillation of a bubble under axisymmetric deformation. Phys. Fluids 18, 072104.CrossRefGoogle Scholar
Shaw, S. J. 2009 The stability of a bubble in a weakly viscous liquid subject to an acoustic travelling wave. Phys. Fluids 21 (2), 022104.CrossRefGoogle Scholar
Stroud, A. H. & Secrest, D. 1966 Gaussian Quadrature Formulas. Prentice-Hall.Google Scholar
Szeri, A. J., Storey, B. D., Pearson, A. & Blake, J. R. 2003 Heat and mass transfer during the violent collapse of nonspherical bubbles. Phys. Fluids 15, 25762586.CrossRefGoogle Scholar
Taib, B. B. 1985 Boundary integral method applied to cavitation bubble dynamics. PhD thesis, The University of Wollonggong.Google Scholar
Taylor, G. I. 1942 Vertical motion of a spherical bubble and the pressure surrounding it. In Underwater Explosion Research, vol. 2, pp. 131144, Office of Naval Research, Washington, DC.Google Scholar
Tomita, Y., Robinson, P. B., Tong, R. P. & Blake, J. R. 2002 Growth and collapse of cavitation bubbles near a curved rigid boundary. J. Fluid Mech. 466, 259283.CrossRefGoogle Scholar
Tomita, Y. & Shima, A. 1986 Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535564.CrossRefGoogle Scholar
Tsai, W. T. & Yue, D. K. P. 1996 Computation of nonlinear free-surface flows. Annu. Rev. Fluid Mech. 28, 249278.CrossRefGoogle Scholar
Turangan, C. K., Jamaluddin, A. R., Ball, G. J. & Leighton, T. G. 2008 Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water. J. Fluid Mech. 598, 125.CrossRefGoogle Scholar
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.CrossRefGoogle Scholar
Wang, Q. X. 1998 The numerical analyses of the evolution of a gas bubble near an inclined wall. Theor. Comput. Fluid Dyn. 12, 2951.CrossRefGoogle Scholar
Wang, Q. X. 2004 Numerical modelling of violent bubble motion. Phys. Fluids 16 (5), 16101619.Google Scholar
Wang, Q. X. 2005 Unstructured MEL modelling of unsteady nonlinear ship waves. J. Comput. Phys. 210 (1) 183224.CrossRefGoogle Scholar
Wang, Q. X., Yeo, K. S., Khoo, B. C. & Lam, K. Y. 1996 a Nonlinear interaction between gas bubble and free surface. Comput. Fluids 25 (7), 607628.CrossRefGoogle Scholar
Wang, Q. X., Yeo, K. S., Khoo, B. C. & Lam, K. Y. 1996 b Strong interaction between buoyancy bubble and free surface. Theor. Comput. Fluid Dyn. 8, 7388.CrossRefGoogle Scholar
Van Dyke, M. D. 1975 Perturbation Methods in Fluid Mechanics, 2nd edn. The Parabolic Press.Google Scholar
Yang, B. & Prosperetti, A. 2008 Vapour bubble collapse in isothermal and non-isothermal liquids. J. Fluid Mech. 601, 253279.CrossRefGoogle Scholar
Young, F. R. 1989 Cavitation. McGraw-Hill.Google Scholar
Yue, P., Feng, J. J., Bertelo, C. A. & Hu, H. H. 2007 An arbitrary Lagrangian–Eulerian method for simulating bubble growth in polymer foaming. J. Comput. Phys. 226 (2), 22292249.CrossRefGoogle Scholar
Zhang, S. G. & Duncan, J. H. 1994 On the non-spherical collapse and rebound of a cavitation bubble. Phys. Fluids 6 (7), 23522362.CrossRefGoogle Scholar
Zhang, S. G., Duncan, J. H. & Chahine, G. L. 1993 The final stage of the collapse of a cavitation bubble near a rigid wall. J. Fluid Mech. 257, 147181.CrossRefGoogle Scholar