Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T05:03:05.134Z Has data issue: false hasContentIssue false

Numerical simulation of a spatially developing accelerating boundary layer over roughness

Published online by Cambridge University Press:  03 September 2015

J. Yuan*
Affiliation:
Department of Mechanical and Materials Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada
U. Piomelli
Affiliation:
Department of Mechanical and Materials Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada
*
Email address for correspondence: junlin.yuan@queensu.ca

Abstract

The direct numerical simulation of an accelerating boundary layer over a rough wall has been carried out to investigate the coupling between the effects of roughness and strong free-stream acceleration. While the favourable pressure gradient is sufficient to achieve quasi-laminarization on a smooth wall, the flow reversion is prevented on a rough wall, and a higher friction coefficient, a faster increase of turbulence intensity compared to the free-stream velocity and more isotropic turbulence near the wall are observed. The logarithmic region of the mean-velocity profile presents an initial decrease in slope as in the smooth case, but soon recovers, as the fully rough regime is reached and a new overlap region is established. A strong coupling between the roughness and acceleration effects develops as roughness leads to more responsive turbulence and prevents the strong acceleration from stabilizing the turbulence, and the acceleration intensifies the velocity scale of the wake field (i.e. the near-wall spatial heterogeneity of the time-averaged velocity distribution). The combined effect is a ‘rougher’ surface as the flow accelerates. In addition, the link between the local values of the free stream and the near-wall velocity depends on the flow history; this explains the different flow responses observed in previous studies, in terms of friction coefficient, turbulent kinetic energy and Reynolds-stress anisotropy. This study elucidates the near-wall flow dynamics, which may be used to explain other non-canonical flows over rough walls.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banyassady, R. & Piomelli, U. 2014 Turbulent plane wall jets over smooth and rough surfaces. J. Turbul. 15, 186207.Google Scholar
Bhaganagar, K., Coleman, G. N. & Kim, J. 2007 Effect of roughness on pressure fluctuations in a turbulent channel flow. Phys. Fluids 19, 028103,1–4.Google Scholar
Bourassa, C. & Thomas, F. O. 2009 An experimental investigation of a highly accelerated turbulent boundary layer. J. Fluid Mech. 634, 359404.Google Scholar
Cal, R. B., Brzek, B., Johansson, T. G. & Castillo, L. 2008 Influence of the external conditions on transitionally rough favorable pressure gradient turbulent boundary layers. J. Turbul. 9 (38), 122.Google Scholar
Cal, R. B., Brzek, B., Johansson, T. G. & Castillo, L. 2009 The rough favourable pressure gradient turbulent boundary layer. J. Fluid Mech. 641, 129155.Google Scholar
Castillo, L., Chen, Y., Araya, G., Newman, J., Jansen, K. & Castillo, L. 2013 DNS of a turbulent boundary layer with surface roughness. J. Fluid Mech. 729, 603637.Google Scholar
Chan-Braun, C., García-Villalba, M. & Uhlmann, M. 2011 Force and torque acting on particles in a transitionally rough open-channel flow. J. Fluid Mech. 684, 441474.Google Scholar
Coceal, O., Thomas, T. G., Castro, I. P. & Belcher, S. E. 2006 Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary-Layer Meteorol. 121, 491519.Google Scholar
Coleman, H. W., Moffat, R. J. & Kays, W. M. 1977 The accelerated fully rough turbulent boundary layer. J. Fluid Mech. 82, 507528.Google Scholar
Finnigan, J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519571.Google Scholar
Flack, K. A., Schultz, M. P. & Shapiro, T. A. 2005 Experimental support for Townsend’s Reynolds number similarity hypothesis on rough walls. Phys. Fluids 17, 035102.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 17601765.Google Scholar
Hong, J., Katz, J. & Schultz, M. P. 2011 Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow. J. Fluid Mech. 667, 137.Google Scholar
Hunt, J. C. R. 1978 A review of the theory of rapidly distorted turbulent flows and its applications. Fluid Dyn. Trans. 9, 121152.Google Scholar
Ikeda, T. & Durbin, P. A. 2007 Direct simulations of a rough-wall channel flow. J. Fluid Mech. 571, 235263.CrossRefGoogle Scholar
Jackson, P. S. 1981 On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 1525.Google Scholar
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.CrossRefGoogle Scholar
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.Google Scholar
Joshi, P., Liu, X. & Katz, J. 2014 Effect of mean and fluctuating pressure gradients on boundary layer turbulence. J. Fluid Mech. 748, 3684.Google Scholar
Keating, A., Piomelli, U., Bremhorst, K. & Nešić, S. 2004 Large-eddy simulation of heat transfer downstream of a backward-facing step. J. Turbul. 5, N20.Google Scholar
Launder, B. E.1964 Laminarization of the turbulent boundary layer by acceleration. Tech. Rep. No. 77, M.I.T. Gas Turbines Lab.Google Scholar
Lee, J. H., Sung, H. J. & Krogstad, P.-Å. 2011 Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J. Fluid Mech. 669, 397431.Google Scholar
Lee, M. J., Kim, J. & Moin, P. 1990 Structure of turbulence at high shear rate. J. Fluid Mech. 216, 561583.Google Scholar
Leonardi, S. S. & Castro, I. P. 2010 Channel flow over large cube roughness: a direct numerical simulation study. J. Fluid Mech. 651, 519539.Google Scholar
Lilly, D. K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4, 633635.CrossRefGoogle Scholar
Lumley, J. L. 1978 Computational modeling of turbulent flows. Adv. Appl. Mech. 18, 123176.Google Scholar
Lund, T. S., Wu, X. & Squires, K. D. 1998 Generation of inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140, 233258.Google Scholar
McEligot, D. M. & Eckelmann, H. 2006 Laterally converging duct flows. Part 3. Mean turbulence structure in the viscous layer. J. Fluid Mech. 549, 2559.CrossRefGoogle Scholar
Meneveau, C., Lund, T. S. & Cabot, W. H. 1996 A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353385.CrossRefGoogle Scholar
Mignot, E., Bartheleemy, E. & Hurther, D. 2009 Double-averaging analysis and local flow characterization of near-bed turbulence in gravel-bed channel flows. J. Fluid Mech. 618, 279303.Google Scholar
Moin, P. & Mahesh, K. 1998 Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30 (1), 539578.CrossRefGoogle Scholar
Moser, R. D. & Moin, P. 1987 The effects of curvature in wall-bounded turbulent flows. J. Fluid Mech. 175, 479510.Google Scholar
Nagib, H. M. & Chauhan, K. A. 2008 Variations of von Kármán coefficient in canonical flows. Phys. Fluids 20, 15180,1–10.Google Scholar
Narasimha, R. & Sreenivasan, K. R. 1973 Relaminarization in highly accelerated turbulent boundary layers. J. Fluid Mech. 61, 417447.Google Scholar
Nickels, T. B. 2004 Inner scaling for wall-bounded flows subject to large pressure gradients. J. Fluid Mech. 521, 217239.Google Scholar
Nikora, V., McEwan, I., McLean, S., Coleman, S., Pokrajac, D. & Walters, R. 2007 Double-averaging concept for rough-bed open-channel and overland flows: theoretical background. J. Hydraul. Engng 133, 873883.Google Scholar
Nikuradse, J.1933 Laws of flow in rough pipes. NACA Technical Memorandum 1292.Google Scholar
Orlanski, I. 1976 A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 21, 251269.Google Scholar
Piomelli, U. & Yuan, J. 2013 Numerical simulations of spatially developing, accelerating boundary layers. Phys. Fluids 25, 101304,1–21.Google Scholar
Raupach, M. R., Antonia, R. A. & Rajagopalan, S. 1991 Rough-wall boundary layers. Appl. Mech. Rev. 44, 125.CrossRefGoogle Scholar
Raupach, M. R. & Shaw, R. H. 1982 Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol. 22, 7990.Google Scholar
Rotta, J. C. 1962 Turbulent boundary layers in incompressible flow. Prog. Aeronaut. Sci. 2 (1), 195.Google Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.Google Scholar
Schultz, M. P. & Flack, K. A. 2007 The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech. 580, 381405.Google Scholar
Scotti, A. 2006 Direct numerical simulation of turbulent channel flows with boundary roughened with virtual sandpaper. Phys. Fluids 18, 031701,1–4.Google Scholar
Shafi, H. S. & Antonia, R. A. 1995 Anisotropy of the Reynolds stresses in a turbulent boundary layer on a rough wall. Exp. Fluids 18, 213215.CrossRefGoogle Scholar
Spalart, P. R. 1986 Numerical study of sink-flow boundary layers. J. Fluid Mech. 172, 307328.Google Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to $R_{{\it\theta}}=1410$ . J. Fluid Mech. 187, 6198.Google Scholar
Tachie, M. F., Agelin-Chaab, M. & Shah, M. K. 2007 Turbulent flow over transverse ribs in open channel with converging side walls. Intl J. Heat Fluid Flow 28, 683707.Google Scholar
Tachie, M. F. & Shah, M. 2008 Favorable pressure gradient turbulent flow over straight and inclined ribs on both channel walls. Phys. Fluids 20, 095103,1–22.Google Scholar
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1973 The wall region in turbulent shear flow. J. Fluid Mech. 54 (01), 3948.Google Scholar
Warnack, D. & Fernholz, H. H. 1998 The effects of a favourable pressure gradient and of the Reynolds number on an incompressible axisymmetric turbulent boundary layer. Part 2. The boundary layer with relaminarization. J. Fluid Mech. 359, 357371.Google Scholar
Yuan, J. & Piomelli, U. 2014a Estimation and prediction of the roughness function on realistic surfaces. J. Turbul. 15, 350365.Google Scholar
Yuan, J. & Piomelli, U. 2014b Numerical simulations of sink-flow boundary layers over rough surfaces. Phys. Fluids 26, 015113,1–28.Google Scholar
Yuan, J. & Piomelli, U. 2014c Roughness effects on the Reynolds stress budgets in near-wall turbulence. J. Fluid Mech. 760, R1.Google Scholar