Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T11:01:56.697Z Has data issue: false hasContentIssue false

Numerical simulations of a sphere settling in simple shear flows of yield stress fluids

Published online by Cambridge University Press:  01 June 2020

Mohammad Sarabian
Affiliation:
Department of Mechanical Engineering, Ohio University, 251 Stocker Center, Athens, OH 45701, USA
Marco E. Rosti
Affiliation:
Linné Flow Centre and SeRC (Swedish e-Science Research Centre), KTH Mechanics, SE 100 44 Stockholm, Sweden Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onnason, Okinawa904-0495, Japan
Luca Brandt
Affiliation:
Linné Flow Centre and SeRC (Swedish e-Science Research Centre), KTH Mechanics, SE 100 44 Stockholm, Sweden
Sarah Hormozi*
Affiliation:
Department of Mechanical Engineering, Ohio University, 251 Stocker Center, Athens, OH 45701, USA
*
Email address for correspondence: hormozi@ohio.edu

Abstract

We perform three-dimensional numerical simulations to investigate the sedimentation of a single sphere in the absence and presence of a simple cross-shear flow in a yield stress fluid with weak inertia. In our simulations, the settling flow is considered to be the primary flow, whereas the linear cross-shear flow is a secondary flow with amplitude 10 % of the primary flow. To study the effects of elasticity and plasticity of the carrying fluid on the sphere drag as well as the flow dynamics, the fluid is modelled using the elastoviscoplastic constitutive laws proposed by Saramito (J. Non-Newtonian Fluid Mech., vol. 158 (1–3), 2009, pp. 154–161). The extra non-Newtonian stress tensor is fully coupled with the flow equation and the solid particle is represented by an immersed boundary method. Our results show that the fore–aft asymmetry in the velocity is less pronounced and the negative wake disappears when a linear cross-shear flow is applied. We find that the drag on a sphere settling in a sheared yield stress fluid is reduced significantly compared to an otherwise quiescent fluid. More importantly, the sphere drag in the presence of a secondary cross-shear flow cannot be derived from the pure sedimentation drag law owing to the nonlinear coupling between the simple shear flow and the uniform flow. Finally, we show that the drag on the sphere settling in a sheared yield stress fluid is reduced at higher material elasticity mainly due to the form and viscous drag reduction.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahonguio, F., Jossic, L. & Magnin, A. 2014 Influence of surface properties on the flow of a yield stress fluid around spheres. J. Non-Newtonian Fluid Mech. 206, 5770.CrossRefGoogle Scholar
Ahonguio, F., Jossic, L. & Magnin, A. 2015 Motion and stability of cones in a yield stress fluid. AIChE J. 61 (2), 709717.CrossRefGoogle Scholar
Alghalibi, D., Lashgari, I., Brandt, L. & Hormozi, S. 2018 Interface-resolved simulations of particle suspensions in Newtonian, shear thinning and shear thickening carrier fluids. J. Fluid Mech. 852, 329357.CrossRefGoogle Scholar
An, C. & Chen, S.2016 Numerical integration over the unit sphere by using spherical $t$-design. arXiv:1611.02785.Google Scholar
Andres, U. T. 1960 Equilibrium and motion of spheres in a viscoplastic liquid. In Dokl. Akad. Nauk, vol. 133, pp. 777780. Russian Academy of Sciences.Google Scholar
Ansley, R. W. & Smith, T. N. 1967 Motion of spherical particles in a Bingham plastic. AIChE J. 13 (6), 11931196.CrossRefGoogle Scholar
Atapattu, D. D., Chhabra, R. P. & Uhlherr, P. H. T. 1995 Creeping sphere motion in Herschel–Bulkley fluids: flow field and drag. J. Non-Newtonian Fluid Mech. 59 (2–3), 245265.CrossRefGoogle Scholar
Atkinson, K. 1982 Numerical integration on the sphere. ANZIAM J. 23 (3), 332347.Google Scholar
Balmforth, N. J., Craster, R. V., Hewitt, D. R., Hormozi, S. & Maleki, A. 2017 Viscoplastic boundary layers. J. Fluid Mech. 813, 929954.CrossRefGoogle Scholar
Beaulne, M. & Mitsoulis, E. 1997 Creeping motion of a sphere in tubes filled with Herschel–Bulkley fluids. J. Non-Newtonian Fluid Mech. 72 (1), 5571.CrossRefGoogle Scholar
Bénito, S., Bruneau, C.-H., Colin, T., Gay, C. & Molino, F. 2008 An elasto-visco-plastic model for immortal foams or emulsions. Eur. Phys. J. E 25 (3), 225251.Google ScholarPubMed
Beris, A. N., Tsamopoulos, J. A., Armstrong, R. C. & Brown, R. A. 1985 Creeping motion of a sphere through a Bingham plastic. J. Fluid Mech. 158, 219244.CrossRefGoogle Scholar
Bingham, E. C. 1922 Fluidity and Plasticity, vol. 2. McGraw-Hill.Google Scholar
Bird, R. B., Dai, G. C. & Yarusso, B. J. 1983 The rheology and flow of viscoplastic materials. Rev. Chem. Engng 1 (1), 170.CrossRefGoogle Scholar
Blackery, J. & Mitsoulis, E. 1997 Creeping motion of a sphere in tubes filled with a Bingham plastic material. J. Non-Newtonian Fluid Mech. 70 (1–2), 5977.CrossRefGoogle Scholar
Boardman, G. & Whitmore, R. L. 1960 Yield stress exerted on a body immersed in a Bingham fluid. Nature 187 (4731), 5051.CrossRefGoogle Scholar
Breugem, W.-P. 2012 A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys. 231 (13), 44694498.CrossRefGoogle Scholar
van den Brule, B. H. A. A. & Gheissary, G. 1993 Effects of fluid elasticity on the static and dynamic settling of a spherical particle. J. Non-Newtonian Fluid Mech. 49 (1), 123132.CrossRefGoogle Scholar
Brunn, P. 1977a Errata to the slow motion of a sphere in a second-order fluid. Rheol. Acta 16 (3), 324325.CrossRefGoogle Scholar
Brunn, P. 1977b The slow motion of a rigid particle in a second-order fluid. J. Fluid Mech. 82 (3), 529547.CrossRefGoogle Scholar
Chaparian, E. & Frigaard, I. A. 2017a Cloaking: particles in a yield-stress fluid. J. Non-Newtonian Fluid Mech. 243, 4755.CrossRefGoogle Scholar
Chaparian, E. & Frigaard, I. A. 2017b Yield limit analysis of particle motion in a yield-stress fluid. J. Fluid Mech. 819, 311351.CrossRefGoogle Scholar
Cheddadi, I. & Saramito, P. 2013 A new operator splitting algorithm for elastoviscoplastic flow problems. J. Non-Newtonian Fluid Mech. 202, 1321.CrossRefGoogle Scholar
Cheddadi, I., Saramito, P., Dollet, B., Raufaste, C. & Graner, F. 2011 Understanding and predicting viscous, elastic, plastic flows. Eur. Phys. J. E 34 (1), 1.Google ScholarPubMed
Chen, S., Phan-Thien, N., Khoo, B. C. & Fan, X. J. 2006 Flow around spheres by dissipative particle dynamics. Phys. Fluids 18 (10), 103605.CrossRefGoogle Scholar
Coussot, P., Raynaud, J. S., Bertrand, F., Moucheront, P., Guilbaud, J. P., Huynh, H. T., Jarny, S. & Lesueur, D. 2002 Coexistence of liquid and solid phases in flowing soft-glassy materials. Phys. Rev. Lett. 88 (21), 218301.CrossRefGoogle ScholarPubMed
De Besses, B. D., Magnin, A. & Jay, P. 2003 Viscoplastic flow around a cylinder in an infinite medium. J. Non-Newtonian Fluid Mech. 115 (1), 2749.CrossRefGoogle Scholar
De Vita, F., Rosti, M. E., Izbassarov, D., Duffo, L., Tammisola, O., Hormozi, S. & Brandt, L. 2018 Elastoviscoplastic flows in porous media. J. Non-Newtonian Fluid Mech. 258, 1021.CrossRefGoogle Scholar
Dimitriou, C. J., Ewoldt, R. H. & McKinley, G. H. 2013 Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress). J. Rheol. 57 (1), 2770.CrossRefGoogle Scholar
Dimitriou, C. J. & McKinley, G. H. 2014 A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid. Soft Matt. 10 (35), 66196644.CrossRefGoogle ScholarPubMed
Dollet, B. & Graner, F. 2007 Two-dimensional flow of foam around a circular obstacle: local measurements of elasticity, plasticity and flow. J. Fluid Mech. 585, 181211.CrossRefGoogle Scholar
Einarsson, J. & Mehlig, B. 2017 Spherical particle sedimenting in weakly viscoelastic shear flow. Phys. Rev. Fluids 2 (6), 063301.CrossRefGoogle Scholar
Faxén, H. 1922 Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist. Ann. Phys. 373 (10), 89119.CrossRefGoogle Scholar
Firouznia, M., Metzger, B., Ovarlez, G. & Hormozi, S. 2018 The interaction of two spherical particles in simple-shear flows of yield stress fluids. J. Non-Newtonian Fluid Mech. 255, 1938.CrossRefGoogle Scholar
Fraggedakis, D., Dimakopoulos, Y. & Tsamopoulos, J. 2016a Yielding the yield-stress analysis: a study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids. Soft Matt. 12 (24), 53785401.CrossRefGoogle Scholar
Fraggedakis, D., Pavlidis, M., Dimakopoulos, Y. & Tsamopoulos, J. 2016b On the velocity discontinuity at a critical volume of a bubble rising in a viscoelastic fluid. J. Fluid Mech. 789, 310346.CrossRefGoogle Scholar
Frigaard, I. A. & Nouar, C. 2005 On the usage of viscosity regularisation methods for visco-plastic fluid flow computation. J. Non-Newtonian Fluid Mech. 127 (1), 126.CrossRefGoogle Scholar
Geri, M., Venkatesan, R., Sambath, K. & McKinley, G. H. 2017 Thermokinematic memory and the thixotropic elasto-viscoplasticity of waxy crude oils. J. Rheol. 61 (3), 427454.CrossRefGoogle Scholar
Glowinski, R. & Wachs, A. 2011 On the numerical simulation of viscoplastic fluid flow. In Handbook of Numerical Analysis, vol. 16, pp. 483717. Elsevier.Google Scholar
Gueslin, B., Talini, L., Herzhaft, B., Peysson, Y. & Allain, C. 2006 Flow induced by a sphere settling in an aging yield-stress fluid. Phys. Fluids 18 (10), 103101.CrossRefGoogle Scholar
Hariharaputhiran, M., Subramanian, R. S., Campbell, G. A. & Chhabra, R. P. 1998 The settling of spheres in a viscoplastic fluid. J. Non-Newtonian Fluid Mech. 79 (1), 8797.CrossRefGoogle Scholar
Harlen, O. G. 2002 The negative wake behind a sphere sedimenting through a viscoelastic fluid. J. Non-Newtonian Fluid Mech. 108 (1-3), 411430.CrossRefGoogle Scholar
Herschel, W. H. & Bulkley, R. 1926 Measurement of consistency as applied to rubber-benzene solutions. In Am. Soc. Test Proc, vol. 26, pp. 621633. American Society for Testing Materials Proceeding (ASTM Proceeding).Google Scholar
Holenberg, Y., Lavrenteva, O. M., Shavit, U. & Nir, A. 2012 Particle tracking velocimetry and particle image velocimetry study of the slow motion of rough and smooth solid spheres in a yield-stress fluid. Phys. Rev. E 86 (6), 066301.Google Scholar
Housiadas, K. D. 2014 Stress diffusion and high order viscoelastic effects in the 3D flow past a sedimenting sphere subject to orthogonal shear. Rheol. Acta 53 (7), 537548.CrossRefGoogle Scholar
Housiadas, K. D. & Tanner, R. I. 2012 The drag of a freely sendimentating sphere in a sheared weakly viscoelastic fluid. J. Non-Newtonian Fluid Mech. 183, 5256.CrossRefGoogle Scholar
Housiadas, K. D. & Tanner, R. I. 2014 Rheological effects in the 3D creeping flow past a sedimenting sphere subject to orthogonal shear. Phys. Fluids 26 (1), 013102.CrossRefGoogle Scholar
Izbassarov, D., Rosti, M. E., Ardekani, M. N., Sarabian, M., Hormozi, S., Brandt, L. & Tammisola, O. 2018 Computational modeling of multiphase viscoelastic and elastoviscoplastic flows. Intl J. Numer. Meth. Fluids 88 (12), 521543.CrossRefGoogle Scholar
Janiaud, E. & Graner, F. 2005 Foam in a two-dimensional Couette shear: a local measurement of bubble deformation. J. Fluid Mech. 532, 243267.CrossRefGoogle Scholar
Jossic, L. & Magnin, A. 2001 Drag and stability of objects in a yield stress fluid. AIChE J. 47 (12), 26662672.CrossRefGoogle Scholar
Kempe, T., Schwarz, S. & Fröhlich, J. 2009 Modelling of spheroidal particles in viscous flows. In Proceedings of the Academy Colloquium Immersed Boundary Methods: Current Status and Future Research Directions (KNAW, Amsterdam, The Netherlands, 15–17 June 2009), vol. 845.Google Scholar
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59 (2), 308323.CrossRefGoogle Scholar
Lashgari, I., Picano, F., Breugem, W.-P. & Brandt, L. 2014 Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions. Phys. Rev. Lett. 113 (25), 254502.CrossRefGoogle ScholarPubMed
Leal, L. G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, vol. 7. Cambridge University Press.CrossRefGoogle Scholar
Liu, B. T., Muller, S. J. & Denn, M. M. 2002 Convergence of a regularization method for creeping flow of a Bingham material about a rigid sphere. J. Non-Newtonian Fluid Mech. 102 (2), 179191.CrossRefGoogle Scholar
Liu, Y., Balmforth, N. J., Hormozi, S. & Hewitt, D. R. 2016 Two-dimensional viscoplastic dambreaks. J. Non-Newtonian Fluid Mech. 238, 6579.CrossRefGoogle Scholar
Lunsmann, W. J., Genieser, L., Armstrong, R. C. & Brown, R. A. 1993 Finite element analysis of steady viscoelastic flow around a sphere in a tube: calculations with constant viscosity models. J. Non-Newtonian Fluid Mech. 48 (1-2), 6399.CrossRefGoogle Scholar
Maleki, A., Hormozi, S., Roustaei, A. & Frigaard, I. A. 2015 Macro-size drop encapsulation. J. Fluid Mech. 769, 482521.CrossRefGoogle Scholar
Meeker, S. P., Bonnecaze, R. T. & Cloitre, M. 2004 Slip and flow in soft particle pastes. Phys. Rev. Lett. 92 (19), 198302.CrossRefGoogle ScholarPubMed
Merkak, O., Jossic, L. & Magnin, A. 2009 Migration and sedimentation of spherical particles in a yield stress fluid flowing in a horizontal cylindrical pipe. AIChE J. 55 (10), 25152525.CrossRefGoogle Scholar
Mitsoulis, E. 2004 On creeping drag flow of a viscoplastic fluid past a circular cylinder: wall effects. Chem. Engng Sci. 59 (4), 789800.CrossRefGoogle Scholar
Miyamura, A., Iwasaki, S. & Ishii, T. 1981 Experimental wall correction factors of single solid spheres in triangular and square cylinders, and parallel plates. Intl J. Multiphase Flow 7 (1), 4146.CrossRefGoogle Scholar
Murch, W. L., Krishnan, S., Shaqfeh, E. SG. & Iaccarino, G. 2017 Growth of viscoelastic wings and the reduction of particle mobility in a viscoelastic shear flow. Phys. Rev. Fluids 2 (10), 103302.CrossRefGoogle Scholar
Nirmalkar, N., Chhabra, R. P. & Poole, R. J. 2012 On creeping flow of a Bingham plastic fluid past a square cylinder. J. Non-Newtonian Fluid Mech. 171, 1730.CrossRefGoogle Scholar
Ouattara, Z., Jay, P., Blésès, D. & Magnin, A. 2018 Drag of a cylinder moving near a wall in a yield stress fluid. AIChE J. 64 (11), 41184130.CrossRefGoogle Scholar
Ovarlez, G., Barral, Q. & Coussot, P. 2010 Three-dimensional jamming and flows of soft glassy materials. Nat. Mater. 9 (2), 115.CrossRefGoogle ScholarPubMed
Ovarlez, G., Bertrand, F., Coussot, P. & Chateau, X. 2012 Shear-induced sedimentation in yield stress fluids. J. Non-Newtonian Fluid Mech. 177, 1928.CrossRefGoogle Scholar
Ovarlez, G. & Hormozi, S. 2019 Lectures on Visco-Plastic Fluid Mechanics. Springer.CrossRefGoogle Scholar
Padhy, S., Rodriguez, M., Shaqfeh, E. S. G., Iaccarino, G., Morris, J. F. & Tonmukayakul, N. 2013a The effect of shear thinning and walls on the sedimentation of a sphere in an elastic fluid under orthogonal shear. J. Non-Newtonian Fluid Mech. 201, 120129.CrossRefGoogle Scholar
Padhy, S., Shaqfeh, E. S. G., Iaccarino, G., Morris, J. F. & Tonmukayakul, N. 2013b Simulations of a sphere sedimenting in a viscoelastic fluid with cross shear flow. J. Non-Newtonian Fluid Mech. 197, 4860.CrossRefGoogle Scholar
Pantokratoras, A. 2018 Flow past a rotating sphere in a Bingham plastic fluid, up to a Reynolds number of 10 000. Rheol. Acta 57 (8-9), 611617.CrossRefGoogle Scholar
Papanastasiou, T. C. 1987 Flows of materials with yield. J. Rheol. 31 (5), 385404.CrossRefGoogle Scholar
Peskin, C. S. 2002 The immersed boundary method. Acta Numerica 11, 479517.CrossRefGoogle Scholar
Putz, A. M. V., Burghelea, T. I., Frigaard, I. A. & Martinez, D. M. 2008 Settling of an isolated spherical particle in a yield stress shear thinning fluid. Phys. Fluids 20 (3), 033102.CrossRefGoogle Scholar
Putz, A. & Frigaard, I. A. 2010 Creeping flow around particles in a Bingham fluid. J. Non-Newtonian Fluid Mech. 165 (5–6), 263280.CrossRefGoogle Scholar
Reeger, J. A. & Fornberg, B. 2016 Numerical quadrature over the surface of a sphere. Stud. Appl. Maths 137 (2), 174188.CrossRefGoogle Scholar
Roma, A. M., Peskin, C. S. & Berger, M. J. 1999 An adaptive version of the immersed boundary method. J. Comput. Phys. 153 (2), 509534.CrossRefGoogle Scholar
Roquet, N. & Saramito, P. 2003 An adaptive finite element method for Bingham fluid flows around a cylinder. Comput. Meth. Appl. Mech. Engng 192 (31-32), 33173341.CrossRefGoogle Scholar
Rosti, M. E. & Brandt, L. 2017 Numerical simulation of turbulent channel flow over a viscous hyper-elastic wall. J. Fluid Mech. 830, 708735.CrossRefGoogle Scholar
Rosti, M. E., Izbassarov, D., Tammisola, O., Hormozi, S. & Brandt, L. 2018 Turbulent channel flow of an elastoviscoplastic fluid. J. Fluid Mech. 853, 488514.CrossRefGoogle Scholar
Saramito, P. 2007 A new constitutive equation for elastoviscoplastic fluid flows. J. Non-Newtonian Fluid Mech. 145 (1), 114.CrossRefGoogle Scholar
Saramito, P. 2009 A new elastoviscoplastic model based on the Herschel–Bulkley viscoplastic model. J. Non-Newtonian Fluid Mech. 158 (1-3), 154161.CrossRefGoogle Scholar
Shahmardi, A., Zade, S., Ardekani, M. N., Poole, R. J., Lundell, F., Rosti, M. E. & Brandt, L. 2019 Turbulent duct flow with polymers. J. Fluid Mech. 859, 10571083.CrossRefGoogle Scholar
Shu, C.-W. 2009 High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51 (1), 82126.Google Scholar
Sikorski, D., Tabuteau, H. & de Bruyn, J. R. 2009 Motion and shape of bubbles rising through a yield-stress fluid. J. Non-Newtonian Fluid Mech. 159 (1-3), 1016.CrossRefGoogle Scholar
de Souza Mendes, P. R. 2007 Dimensionless non-Newtonian fluid mechanics. J. Non-Newtonian Fluid Mech. 147 (1), 109116.CrossRefGoogle Scholar
Sverdrup, K., Almgren, A. & Nikiforakis, N. 2019 An embedded boundary approach for efficient simulations of viscoplastic fluids in three dimensions. Phys. Fluids 31 (9), 093102.CrossRefGoogle Scholar
Tabuteau, H., Coussot, P. & de Bruyn, J. R. 2007 Drag force on a sphere in steady motion through a yield-stress fluid. J. Rheol. 51 (1), 125137.CrossRefGoogle Scholar
Tokpavi, D. L., Jay, P., Magnin, A. & Jossic, L. 2009 Experimental study of the very slow flow of a yield stress fluid around a circular cylinder. J. Non-Newtonian Fluid Mech. 164 (1-3), 3544.CrossRefGoogle Scholar
Tokpavi, D. L., Magnin, A. & Jay, P. 2008 Very slow flow of Bingham viscoplastic fluid around a circular cylinder. J. Non-Newtonian Fluid Mech. 154 (1), 6576.CrossRefGoogle Scholar
Uhlmann, M.2003 First experiments with the simulation of particulate flows. Tech. Rep. Centro de Investigaciones Energeticas.Google Scholar
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209 (2), 448476.CrossRefGoogle Scholar
Vázquez-Quesada, A., Bian, X. & Ellero, M. 2016 Three-dimensional simulations of dilute and concentrated suspensions using smoothed particle hydrodynamics. Comput. Part. Mech. 3 (2), 167178.CrossRefGoogle Scholar
Vishnampet, R. & Saintillan, D. 2012 Concentration instability of sedimenting spheres in a second-order fluid. Phys. Fluids 24 (7), 073302.CrossRefGoogle Scholar
Volarovich, M. P. & Gutkin, A. M. 1953 Theory of flow of a viscoplastic medium. Colloid J. 15, 153.Google Scholar
Wachs, A. & Frigaard, I. A. 2016 Particle settling in yield stress fluids: limiting time, distance and applications. J. Non-Newtonian Fluid Mech. 238, 189204.CrossRefGoogle Scholar
Yoshioka, N., Adachi, K. & Ishimura, H. 1971 On creeping flow of a viscoplastic fluid past a sphere. Kagaku Kogaku 10 (1144), 631.Google Scholar
Yu, Z. & Wachs, A. 2007 A fictitious domain method for dynamic simulation of particle sedimentation in Bingham fluids. J. Non-Newtonian Fluid Mech. 145 (2-3), 7891.CrossRefGoogle Scholar
Zheng, R., Phan-Thien, N. & Tanner, R. I. 1991 The flow past a sphere in a cylindrical tube: effects of intertia, shear-thinning and elasticity. Rheol. Acta 30 (6), 499510.CrossRefGoogle Scholar
Zisis, T. & Mitsoulis, E. 2002 Viscoplastic flow around a cylinder kept between parallel plates. J. Non-Newtonian Fluid Mech. 105 (1), 120.CrossRefGoogle Scholar