Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T02:55:08.679Z Has data issue: false hasContentIssue false

Objective barriers to the transport of dynamically active vector fields

Published online by Cambridge University Press:  27 October 2020

George Haller*
Affiliation:
Institute for Mechanical Systems, ETH Zürich, Zürich, Switzerland
Stergios Katsanoulis
Affiliation:
Institute for Mechanical Systems, ETH Zürich, Zürich, Switzerland
Markus Holzner
Affiliation:
WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
Bettina Frohnapfel
Affiliation:
Institute of Fluid Mechanics, Karlsruhe Institute of Technology, Karlsruhe, Germany
Davide Gatti
Affiliation:
Institute of Fluid Mechanics, Karlsruhe Institute of Technology, Karlsruhe, Germany
*
Email address for correspondence: georgehaller@ethz.ch

Abstract

We derive a theory for material surfaces that maximally inhibit the diffusive transport of a dynamically active vector field, such as the linear momentum, the angular momentum or the vorticity, in general fluid flows. These special material surfaces (Lagrangian active barriers) provide physics-based, observer-independent boundaries of dynamically active coherent structures. We find that Lagrangian active barriers evolve from invariant surfaces of an associated steady and incompressible barrier equation, whose right-hand side is the time-averaged pullback of the viscous stress terms in the evolution equation for the dynamically active vector field. Instantaneous limits of these barriers mark objective Eulerian active barriers to the short-term diffusive transport of the dynamically active vector field. We obtain that in unsteady Beltrami flows, Lagrangian and Eulerian active barriers coincide exactly with purely advective transport barriers bounding observed coherent structures. In more general flows, active barriers can be identified by applying Lagrangian coherent structure (LCS) diagnostics, such as the finite-time Lyapunov exponent and the polar rotation angle, to the appropriate active barrier equation. In comparison to their passive counterparts, these active LCS diagnostics require no significant fluid particle separation and hence provide substantially higher-resolved LCS and Eulerian coherent structure boundaries from temporally shorter velocity data sets. We illustrate these results and their physical interpretation on two-dimensional, homogeneous, isotropic turbulence and on a three-dimensional turbulent channel flow.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Anghan, C., Dave, S., Saincher, S. & Banerjee, J. 2014 Direct numerical simulation of transitional and turbulent round jets: Evolution of vortical structures and turbulence budget. Phys. Fluids 31, 053606.Google Scholar
Antuono, M. 2020 Tri-periodic fully three-dimensional analytic solutions for the Navier–Stokes equations. J. Fluid Mech. 890, A23.CrossRefGoogle Scholar
Aref, H., Blake, J. R., Budisic, M., Cardoso, S. S. S., Cartwright, J. H. E., Clercx, H. J. H., El Omari, K., Feudel, U., Golestanian, L., Gouillart, E., et al. 2017 Frontiers of chaotic advection. Rev. Mod. Phys. 89, 025007.CrossRefGoogle Scholar
Arnold, V. I. 1978 Mathematical Methods of Classical Mechanics. Springer.CrossRefGoogle Scholar
Arnold, V. I. & Keshin, B. A. 1998 Topological Methods in Hydrodynamics. Springer.CrossRefGoogle Scholar
Balasuriya, S., Ouellette, N. T. & Rypina, I. 2018 Generalized Lagrangian coherent structures. Physica D 372, 3151.CrossRefGoogle Scholar
Batchelor, G. K. 2000 An Introduction to Fluid Mechanics. Cambridge University Press.Google Scholar
Barbato, D., Berselli, L.-C. & Grisanti, C. R. 2007 Analytical and numerical results for the rational large eddy simulation model. J. Math. Fluid Mech. 9, 4474.CrossRefGoogle Scholar
Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 2007 Transport Phenomena. John Wiley & Sons.Google Scholar
Childress, S. 2009 A Theoretical Introduction to Fluid Mechanics. AMS.CrossRefGoogle Scholar
De Silva, C., Hutchins, N. & Marusic, I. 2016 Uniform momentum zones in turbulent boundary layers. J. Fluid Mech. 786, 309331.CrossRefGoogle Scholar
Dinklage, A., Klinger, T., Marx, G. & Schweikhard, L. 2005 Plasma Physics – Confinement, Transport and Collective Effects. Springer.CrossRefGoogle Scholar
Dombre, T., Frisch, U., Greene, J. M., Hé non, M., Mehr, A. & Soward, A. M. 1986 Chaotic streamlines in ABC flows. J. Fluid Mech. 167, 353391.CrossRefGoogle Scholar
Dubief, Y. & Delcayre, F. 2000 On coherent-vortex identification in turbulence. J. Turbul. 1, 011.CrossRefGoogle Scholar
Epps, B. 2017 Review of vortex identification methods. In AIAA SciTech Forum, 9–13 January 2017, Grapevine, Texas, 55th AIAA Aerospace Sciences Meeting, 1–22.Google Scholar
Ethier, R. C. & Steinman, D. A. 1994 Exact fully 3D Navier–Stokes solutions for benchmarking. Intl J. Numer. Meth. Fluids 19, 369375.CrossRefGoogle Scholar
Farazmand, M. & Haller, G. 2016 Polar rotation angle identifies elliptic islands in unsteady dynamical systems. Physica D 315, 112.CrossRefGoogle Scholar
Farazmand, M., Kevlahan, N. & Protas, B. 2011 Controlling the dual cascades of two-dimensional turbulence. J. Fluid Mech. 668, 202222.CrossRefGoogle Scholar
Gao, F., Ma, W., Zambonini, G., Boudet, J., Ottavy, X., Lu, L. & Shao, L. 2015 Large-eddy simulation of 3-D corner separation in a linear compressor cascade. Phys. Fluids 27, 085105.CrossRefGoogle Scholar
Guckenheimer, J. & Holmes, P. 1983 Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer.CrossRefGoogle Scholar
Günther, T. & Theisel, H. 2018 The state of the art in vortex extraction. Comput. Graph. Forum 37, 149173.CrossRefGoogle Scholar
Gurtin, M. E., Fried, E. & Anand, L. 2013 The Mechanics and Thermodynamics of Continua. Cambridge University Press.Google Scholar
Hadjighasem, A., Farazmand, M., Blazevski, D., Froyland, G. & Haller, G. 2017 A critical comparison of Lagrangian methods for coherent structure detection. Chaos 27, 053104.CrossRefGoogle ScholarPubMed
Haller, G. 2001 Distinguished material surfaces and coherent structures in 3D fluid flows. Physica D 149, 248277.CrossRefGoogle Scholar
Haller, G. 2015 Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137162.CrossRefGoogle Scholar
Haller, G., Hadjighasem, A., Farazamand, M. & Huhn, F. 2016 Defining coherent vortices objectively from the vorticity. J. Fluid Mech. 795, 136173.CrossRefGoogle Scholar
Haller, G., Karrasch, D. & Kogelbauer, F. 2019 Material barriers to diffusive and stochastic transport. Proc. Natl Acad. Sci. USA 115 (37), 90749079.CrossRefGoogle Scholar
Haller, G., Karrasch, D. & Kogelbauer, F. 2020 Barriers to the transport of diffusive scalars in compressible flows. SIAM J. Appl. Dyn. Syst. 19 (1), 85123.CrossRefGoogle Scholar
Hamilton, J., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
Hasegawa, Y., Quadrio, M. & Frohnapfel, B. 2014 Numerical simulation of turbulent duct flows at constant power input. J. Fluid Mech. 750, 191209.CrossRefGoogle Scholar
van Hinsberg, M. A. T., Ten Thije Boonkamp, J. H. M., Toschi, F. & Clercx, H. J. H. 2012 On the efficiency and accuracy of interpolation methods for spectral codes. J. Sci. Comput. 34, 479498.Google Scholar
Hunt, J. C. R., Wray, A. & Moin, P. 1988 Eddies, stream, and convergence zones in turbulent flows. Tech. Rep. CTR-S88. Center for Turbulence Research.Google Scholar
Hutchins, N. & Marusic, I. 2007 Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. A 365, 647664.CrossRefGoogle ScholarPubMed
Jantzen, R. T., Taira, K., Granlund, K. O. & Ol, M. V. 2019 Vortex dynamics around pitching plates. Phys. Fluids 26, 065105.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332, 185214.CrossRefGoogle Scholar
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.CrossRefGoogle Scholar
Katsanoulis, S., Farazmand, M., Serra, M. & Haller, G. 2020 Vortex boundaries as barriers to diffusive vorticity transport in two-dimensional flows. Phys. Rev. Fluids 5, 024701.CrossRefGoogle Scholar
Lele, S. K. 1992 Compact finite-difference schemes with spectral-like resolution. J. Comput. Phys. 103, 1642.CrossRefGoogle Scholar
Luchini, P. & Quadrio, M. 2006 A low-cost parallel implementation of direct numerical simulation of wall turbulence. J. Comput. Phys. 211, 551571.CrossRefGoogle Scholar
Lugt, H. J. 1979 The dilemma of defining a vortex. In Recent Developments in Theoretical and Experimental Fluid Mechanics (ed. U. Muller, K. G. Riesner & B. Schmidt), vol. 13, pp. 309–321.Google Scholar
MacKay, R. S. 1994 Transport in 3D volume-preserving flow. J. Nonlinear Sci. 4, 329354.CrossRefGoogle Scholar
MacKay, R. S., Meiss, J. D. & Percival, I. C. 1984 Transport in Hamiltonian systems. Physica D 13, 5581.CrossRefGoogle Scholar
Majda, A. J. & Bertozzi, A. L. 2002 Vorticity and Incompressible Flow. Cambridge University Press.Google Scholar
Marusic, I., Mathis, R. & Hutchins, N. 2010 Predictive model for wall-bounded turbulent flow. Science 329, 193196.CrossRefGoogle ScholarPubMed
McMullan, W. A. & Page, G. J. 2012 Towards large eddy simulation of gas turbine compressors. Prog. Aerosp. Sci. 52, 3047.CrossRefGoogle Scholar
Meiss, J. D. 1992 Symplectic maps, variational principles, and transport. Rev. Mod. Phys. 64, 795848.CrossRefGoogle Scholar
Meyers, J. & Meneveau, C. 2013 Flow visualization using momentum and energy transport tubes and applications to turbulent flow in wind farms. J. Fluid Mech. 715, 335358.CrossRefGoogle Scholar
Nolan, P. J., Serra, M. & Ross, S. D. 2020 Finite-time Lyapunov exponents in the instantaneous limit and material transport. Nonlinear Dyn. 100, 38253852.CrossRefGoogle Scholar
Ogden, R. W. 1984 Non-linear Elastic Deformations. Ellis Horwood.Google Scholar
Ottino, J. M. 1989 The Kinematics of Mixing: Stretching, Chaos and Transport. Cambridge University Press.Google Scholar
Pandey, A., Scheel, J. D. & Schumacher, J. 2018 Turbulent superstructures in Rayleigh–Bénard convection. Nat. Commun. 9, 2118.CrossRefGoogle ScholarPubMed
Pedergnana, T., Oettinger, D., Langlois, G. P. & Haller, G. 2020 Explicit unsteady Navier–Stokes solutions and their analysis via local vortex criteria. Phys. Fluids 32, 046603.CrossRefGoogle Scholar
Pitton, E., Marchioli, C., Lavezzo, C., Soldati, A. & Toschi, F. 2012 Anisotropy in pair dispersion of inertial particles in turbulent channel. Phys. Fluids 24, 073305.CrossRefGoogle Scholar
Quadrio, M. & Luchini, P. 2003 Integral space–time scales in turbulent wall flows. Phys. Fluids 24, 22192227.CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Rosner, D. 2000 Transport Processes in Chemically Reacting Flow Systems. Dover.Google Scholar
Sadlo, F. & Pikert, R. 2009 Visualizing Lagrangian coherent structures and comparison to vector field topology. In Topology-Based Methods in Visualization II, pp. 15–29. Springer.CrossRefGoogle Scholar
Saffman, P. G., Ablowitz, M. J., Hinch, E., Ockendon, J. R. & Olver, P. J. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Schindler, B., Peikert, R., Ruchs, R. & Theisel, H. 2012 Ridge concepts for the visualization of Lagrangian coherent structures. In Topological Methods in Data Analysis and Visualization II: Theory, Algorithms, and Applications, pp. 221–235. Springer.CrossRefGoogle Scholar
Serra, M. & Haller, G. 2016 Objective Eulerian coherent structures. Chaos 26, 053110.CrossRefGoogle ScholarPubMed
Surana, A., Grunberg, O. & Haller, G. 2006 Exact theory of three-dimensional flow separation. Part I. Steady separation. J. Fluid Mech. 564, 57103.CrossRefGoogle Scholar
Truesdell, C. & Rajagopal, K. R. 2009 An Introduction to the Mechanics of Fluids. Birkhäuser.Google Scholar
Weiss, J. B. & Provenzale, A. 2008 Transport and Mixing in Geophysical Flows: Creators of Modern Physics, vol. 744. Springer.CrossRefGoogle Scholar

Haller et al. Supplementary Material

Computation of Eulerian active barriers to momentum transport from aFTLE for under increasing barrier time s in the turbulent channel flow example

Download Haller et al. Supplementary Material(Video)
Video 2.9 MB

Haller et al. Supplementary Material

Computation of Eulerian active barriers to vorticity transport from aFTLE for under increasing barrier time s in the turbulent channel flow example

Download Haller et al. Supplementary Material(Video)
Video 3 MB

Haller et al. Supplementary Material

A moving cross section of Eulerian, momentum-based aFTLE along the channel, with level surfaces of the lambda2 parameter superimposed

Download Haller et al. Supplementary Material(Video)
Video 36 MB

Haller et al. Supplementary Material

A moving cross section of Eulerian, vorticity-based aFTLE along the channel, with level surfaces of the lambda2 parameter superimposed
Download Haller et al. Supplementary Material(Video)
Video 34.5 MB