Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T19:44:50.018Z Has data issue: false hasContentIssue false

Observations of hypervelocity boundary-layer instability

Published online by Cambridge University Press:  16 September 2015

N. J. Parziale*
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
J. E. Shepherd
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
H. G. Hornung
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
*
Email address for correspondence: nick.parziale@gmail.com

Abstract

A novel optical method is used to measure the high-frequency (up to 3 MHz) density fluctuations that precede transition to turbulence within a laminar boundary layer in a hypervelocity flow. This optical method, focused laser differential interferometry, enables measurements of short-wavelength, high-frequency disturbances that are impossible with conventional instrumentation such as pressure transducers or hot wires. In this work, the T5 reflected-shock tunnel is used to generate flows in air, nitrogen and carbon dioxide with speeds between 3.5 and $5~\text{km}~\text{s}^{-1}$ (Mach numbers between 4 and 6) over a 5° half-angle cone at zero angle of attack. Simultaneous measurements are made at two locations approximately midway along a generator of the 1-m-long cone. With increasing Reynolds number (unit values were between 2 and $5\times 10^{6}~\text{m}^{-1}$), density fluctuations are observed to grow in amplitude and transition from a single narrow band of frequencies consistent with the Mack or second mode of boundary-layer instability to bursts of large-amplitude and spectrally broad disturbances that appear to be precursors of turbulent spots. Disturbances that are sufficiently small in initial amplitude have a wavepacket-like signature and are observed to grow in amplitude between the upstream and downstream measurement locations. A cross-correlation analysis indicates propagation of wavepackets at speeds close to the edge velocity. The free stream flow created by the shock tunnel and the resulting boundary layer on the cone are computed, accounting for chemical and vibrational non-equilibrium processes. Using this base flow, local linear and parabolized stability (PSE) analyses are carried out and compared with the experimental results. Reasonable agreement is found between measured and predicted most unstable frequencies, with the greatest differences being approximately 15 %. The scaling of the observed frequency with the inverse of boundary-layer thickness and directly with the flow velocity are consistent with the characteristics of Mack’s second mode, as well as results of previous researchers on hypersonic boundary layers.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, P. H. & Hornung, H. G. 1997 Enthalpy effects on hypervelocity boundary-layer transition: ground test and flight data. J. Spacecr. Rockets 34 (5), 614619.Google Scholar
Azzazy, M., Modarress, D. & Hoeft, T. 1987 High-sensitivity density fluctuation detector. J. Phys. E: Sci. Instrum. 20 (4), 428431.Google Scholar
Berridge, D. C.2010 Measurements of second-mode instability waves in hypersonic boundary layers with a high-frequency pressure transducer. Master’s thesis, Purdue University.Google Scholar
Bitter, N. P. & Shepherd, J. E.2014. Transient growth in hypersonic boundary layers. 7th AIAA Theoretical Fluid Mechanics Conference, Atlanta GA, June 2014, AIAA Paper 2014-2497.Google Scholar
Bitter, N. P.2015 Stability of hypervelocity boundary layers. PhD thesis, California Institute of Technology, California, USA.Google Scholar
Boedeker, L. R.1959 Analysis and construction of a sharp focusing schlieren system. Master’s thesis, Massachusetts Institute of Technology, Massachusetts.Google Scholar
Candler, G. V. 2005 Hypersonic nozzle analysis using an excluded volume equation of state. In Proceedings of 38th AIAA Thermophysics Conference, Toronto, Ontario, Canada, AIAA-2005-5202.Google Scholar
Casper, K. M.2009 Hypersonic wind-tunnel measurements of boundary-layer pressure fluctuations. Master’s thesis, Purdue University.Google Scholar
Chang, C.-L. & Malik, M. R. 1994 Oblique-mode breakdown and secondary instability in supersonic boundary layers. J. Fluid Mech. 273 (1), 323360.CrossRefGoogle Scholar
Coleman, H. W. & Steele, W. G. 1999 Experimentation and Uncertainty Analysis for Engineers, 2nd edn. John Wiley and Sons, Inc.Google Scholar
Demetriades, A.1977 Laminar boundary layer stability measurements at Mach 7 including wall temperature effects. AFOSR-TR-77-1311.Google Scholar
Fedorov, A. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 7995.CrossRefGoogle Scholar
Fedorov, A. & Tumin, A. 2011 High-speed boundary-layer instability: old terminology and a new framework. AIAA J. 49, 16471657.Google Scholar
Fujii, K. 2006 Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition. J. Spacecr. Rockets 43 (4), 731738.Google Scholar
Fujii, K., Noriaki, H., Tadao, K., Shoichi, T., Muneyoshi, N., Yukihiro, I., Akihiro, N. & Hiroshi, O. 2011 A measurement of instability wave in the hypersonic boundary layer on a sharp cone. In Proceedings of the 41st AIAA Fluid Dynamics Conference and Exhibit, Honolulu, Hawaii, AIAA-2011-3871.Google Scholar
Garg, S. & Settles, G. S. 1998 Measurements of a supersonic turbulent boundary layer by focusing schlieren deflectometry. Exp. Fluids 25 (3), 254264.Google Scholar
Germain, P. D. & Hornung, H. G. 1997 Transition on a slender cone in hypervelocity flow. Exp. Fluids 22, 183190.CrossRefGoogle Scholar
Gronvall, J. E., Johnson, H. B. & Candler, G. V. 2014 Boundary-layer stability analysis of high enthalpy shock tunnel transition experiments. J. Spacecr. Rockets 51, 455467.CrossRefGoogle Scholar
Heitmann, D., Kähler, C., Radespiel, R., Rödiger, T., Knauss, H. & Wagner, S. 2011 Non-intrusive generation of instability waves in a planar hypersonic boundary layer. Exp. Fluids 50, 457464.Google Scholar
Herbert, T.1993 Parabolized stability equations. AGARD-R-793.Google Scholar
Herbert, T. 1997 Parabolized stability equations. Annu. Rev. Fluid Mech. 29 (1), 245283.Google Scholar
Hofferth, J. W., Humble, R. A., Floryan, D. C. & Saric, W. S. 2013a High-bandwidth optical measurements of the second-mode instability in a Mach 6 quiet tunnel. In Proceedings of 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Grapevine, Texas, AIAA 2013-0378.Google Scholar
Hofferth, J. W., Saric, W., Kuehl, J., Perez, E., Kocian, T. & Reed, H. 2013b Boundary layer instability and transition on a flared cone in a Mach 6 quiet wind tunnel. Intl J. Engng Syst. Model. Simul. 5 (1), 109124.Google Scholar
Hornung, H. G. 1993 Experimental hypervelocity flow simulation, needs, achievements and limitations. In Proceedings of the First Pacific International Conference on Aero Sc. and Tech., Taiwan.Google Scholar
Jewell, J. S.2014 Boundary-layer transition on a slender cone in hypervelocity flow with real gas effects. PhD thesis, California Institute of Technology.Google Scholar
Jewell, J. S., Leyva, I. A., Parziale, N. J. & Shepherd, J. E. 2011 Effect of gas injection on transition in hypervelocity boundary layers. In Proceedings of the 28th International Symposium on Shock Waves, Manchester, UK, ISSW.Google Scholar
Jewell, J. S., Parziale, N. J., Leyva, I. A., Shepherd, J. E. & Hornung, H. G. 2012 Turbulent spot observations within a hypervelocity boundary layer on a 5-degree half-angle cone. In Proceedings of 42nd AIAA Fluid Dynamics Conference and Exhibit, New Orleans, Louisiana, AIAA-2012-3062.Google Scholar
Jewell, J. S., Shepherd, J. E. & Leyva, I. A. 2013a Shock tunnel operation and correlation of boundary layer transition on a cone in hypervelocity flow. In Proceedings of the 29th International Symposium on Shock Waves, Madison, WI, ISSW.Google Scholar
Jewell, J. S., Wagnild, R. M., Leyva, I. A., Candler, G. V. & Shepherd, J. E. 2013b Transition within a hypervelocity boundary layer on a 5-degree half-angle cone in air/ $\text{CO}_{2}$ mixtures. In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, Texas, AIAA-2013-0523.Google Scholar
Johnson, H. B.2000 Thermochemical interactions in hypersonic boundary layer stability. PhD thesis, University of Minnesota.Google Scholar
Johnson, H. B., Seipp, T. G & Candler, G. V. 1998 Numerical study of hypersonic reacting boundary layer transition on cones. Phys. Fluids 10 (13), 26762685.Google Scholar
Kendall, J. M. 1975 Wind-tunnel experiments relating to supersonic and hypersonic boundary-layer transition. AIAA J. 13 (3), 290299.Google Scholar
Kimmel, R. L., Demetriades, A. & Donaldson, J. C. 1996 Space–time correlation measurements in a hypersonic transitional boundary layer. AIAA J. 34 (12), 24842489.Google Scholar
Laderman, A. J. & Demetriades, A. 1976 Detection of boundary-layer-transition with a laser-beam. AIAA J. 14 (1), 102104.Google Scholar
Lau, K. Y. 2008 Hypersonic boundary-layer transition: application to high-speed vehicle design. J. Spacecr. Rockets 45 (2), 176183.Google Scholar
Laurence, S. J., Wagner, A. & Hannemann, K. 2014a Schlieren-based techniques for investigating instability development and transition in a hypersonic boundary layer. Exp. Fluids 55 (8), 1782.CrossRefGoogle Scholar
Laurence, S. J., Wagner, A., Hannemann, K., Wartemann, V., Lüdeke, H., Tanno, H. & Itoh, K. 2012 Time-resolved visualization of instability waves in a hypersonic boundary layer. AIAA J. 50 (6), 243246.Google Scholar
Laurence, S. J., Wagner, A., Ozawa, H., Schramm, J. M. & Hannemann, K. 2014b Visualization of a hypersonic boundary-layer transition on a slender cone. In 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Atlanta, Georgia, AIAA-2014-3110.Google Scholar
Lees, L. & Lin, C. C.1946 Investigation of the stability of the laminar boundary layer in a compressible fluid. Tech. Rep. Technical Note 1155.Google Scholar
Lin, T. C. 2008 Influence of laminar boundary-layer transition on entry vehicle designs. J. Spacecr. Rockets 45 (2), 165175.CrossRefGoogle Scholar
Mack, L. M. 1975 Linear stability theory and the problem of supersonic boundary-layer transition. AIAA 13 (3), 278289.CrossRefGoogle Scholar
Mack, L. M.1984 Boundary-layer linear stability theory. AGARD Rep 709.Google Scholar
Mack, L. M. 1999 Early history of compressible linear stability theory. In Laminar–Turbulent Transition (ed. Fasel, H. & Saric, W. S.), pp. 247299. Springer.Google Scholar
Marineau, E. C., Moraru, G. C., Lewis, D. R., Norris, J. D., Lafferty, J. D. & Johnson, H. B. 2015 Investigation of Mach 10 boundary layer stability of sharp cones at angle-of-attack, part 1: experiments. In Proceedings of AIAA SciTech 2015, Kissimmee, Florida, AIAA-2015-1737.Google Scholar
McQuarrie, D. 2000 Statistical Mechanics. University Science Books.Google Scholar
O’Hare, J. E. 1985 A nonperturbing boundary-layer transition detector. In Proceedings of SPIE 0569, High Speed Photography, Videography, and Photonics III. San Diego, California, pp. 5863.Google Scholar
Parziale, N. J.2013 Slender-body hypervelocity boundary-layer instability. PhD thesis, California Institute of Technology.Google Scholar
Parziale, N. J., Jewell, J. S., Shepherd, J. E. & Hornung, H. G. 2011 Shock tunnel noise measurement with resonantly enhanced focused schlieren deflectometry. In Proceedings of the 28th International Symposium on Shock Waves, Manchester, UK, ISSW.Google Scholar
Parziale, N. J., Shepherd, J. E. & Hornung, H. G. 2013a Differential interferometric measurement of instability at two points in a hypervelocity boundary layer. In Proceedings of 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Grapevine, Texas, AIAA-2013-0521.Google Scholar
Parziale, N. J., Shepherd, J. E. & Hornung, H. G. 2013b Differential interferometric measurement of instability in a hypervelocity boundary layer. AIAA J. 51 (3), 750754.Google Scholar
Parziale, N. J., Shepherd, J. E. & Hornung, H. G. 2014 Free-stream density perturbations in a reflected-shock tunnel. Exp. Fluids 55 (2), 16651668.CrossRefGoogle Scholar
Rasheed, A., Hornung, H. G., Fedorov, A. V. & Malmuth, N. D. 2002 Experiments on passive hypervelocity boundary-layer control using an ultrasonically absorptive surface. AIAA J. 40 (3), 481489.Google Scholar
Reshotko, E. 2008 Transition issues for atmospheric entry. J. Spacecr. Rockets 45 (2), 161164.Google Scholar
Roediger, T., Knauss, H., Estorf, M., Schneider, S. P. & Smorodsky, B. V. 2009 Hypersonic instability waves measured using fast-response heat-flux gauges. J. Spacecr. Rockets 46 (2), 266273.Google Scholar
Roediger, T., Knauss, H., Gaisbauer, Uwe, Kraemer, E., Jenkins, S. & von Wolfersdorf, J. 2008 Time-resolved heat transfer measurements on the tip wall of a ribbed channel using a novel heat flux sensor, part I. Sensor and benchmarks. J. Turbomach. 130 (1), 011018.Google Scholar
Rotta, N. R.1966 Effects of nose bluntness on the boundary layer characteristics of conical bodies at hypersonic speeds. AD-0645668 or NYU-AA-66-66.Google Scholar
Salyer, T. R., Collicott, S. H. & Schneider, S. P. 2006 Characterizing Laser-Generated Hot Spots for Receptivity Studies, vol. 44, pp. 28712878.Google Scholar
Saric, W. S., Reed, H. L. & Kerschen, E. J. 2002 Boundary layer receptivity to freestream disturbances. Annu. Rev. Fluid Mech. 34, 291319.Google Scholar
Schlichting, H. 1933 Zur Entstehung der Turbulenz bei der Plattenströmung. In Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen: Mathematisch-Physikalische Klasse, pp. 181208. See also: ZAMM vol. 13, 171–174 (1933).Google Scholar
Schmisseur, J. D. & Erbland, P. 2012 Introduction: assessment of aerothermodynamic flight prediction tools through ground and flight experimentation. Prog. Aerosp. Sci. 48–49, 27.Google Scholar
Schneider, S. P. 2001 Effects of high-speed tunnel noise on laminar–turbulent transition. J. Spacecr. Rockets 38 (3), 323333.Google Scholar
Schneider, S. P. 2004 Hypersonic laminar–turbulent transition on circular cones and scramjet forebodies. Prog. Aerosp. Sci. 40 (1–2), 150.CrossRefGoogle Scholar
Schneider, S. P. 2008 Development of hypersonic quiet tunnels. J. Spacecr. Rockets 45 (4), 641664.Google Scholar
Schubauer, G. B. & Skramstad, H. K.1948 Laminar-boundary-layer oscillations and transition on a flat plate, NACA-TR-909.Google Scholar
Settles, G. S. 2001 Schlieren and Shadowgraph Techniques, 1st edn. Springer.CrossRefGoogle Scholar
Smeets, G. 1972 Laser interferometer for high sensitivity measurements on transient phase objects. IEEE Trans. Aerosp. Electron. Syst. 8 (2), 186190.CrossRefGoogle Scholar
Smeets, G.1973 Laser-Interferometer mit grossen, fokussierten Lichtbündeln für lokale Messungen, ISL - N11/73.Google Scholar
Smeets, G.1974 Verwendung eines Laser-Differentialinterferometers zur Bestimmung lokaler Schwankungsgrössen sowie des mittleren Dichteprofils in cinem turbulenten Freistrahl, ISL - N20/74.Google Scholar
Smeets, G. 1977 Flow diagnostics by laser interferometry. IEEE Trans. Aerosp. Electron. Syst. AES-13 (2), 82–90.Google Scholar
Smeets, G. & George, A.1973 Anwendungen des Laser-Differential interferometers in der Gasdynamik, ISL - N28/73, Also translated by Goetz, A.: ADA-307459.Google Scholar
Stalker, R. J. 1989 Hypervelocity aerodynamics with chemical nonequilibrium. Annu. Rev. Fluid Mech. 21, 3760.Google Scholar
Stetson, K. F. 1983 Nosetip bluntness effects on cone frustum boundary layer transition in hypersonic flow. In Proceedings of the AlAA 16th Fluid and Plasma Dynamics Conference, Danvers, Massachusetts, AIAA-83-1763.Google Scholar
Stetson, K. F., Donaldson, J. C. & Siler, L. G. 1984 Laminar boundary layer stability experiments on a cone at Mach 8, part 2: blunt cone. In Proceedings of the 22nd AIAA Aerospace Sciences Meeting, Reno, Nevada, AIAA-84-0006.Google Scholar
Stetson, K. F., Thompson, E. R., Donaldson, J. C. & Siler, L. G. 1983 Laminar boundary layer stability experiments on a cone at Mach 8, part 1: sharp cone. In Proceedings of the AlAA 16th Fluid and Plasma Dynamics Conference, Danvers, Massachusetts, AIAA-83-1761.Google Scholar
Stetson, K. F., Thompson, E. R., Donaldson, J. C. & Siler, L. G. 1989 Laminar boundary layer stability experiments on a cone at Mach 8, part 5: tests with a cooled model. In Proceedings of the AlAA 20th Fluid and Plasma Dynamics Conference, Buffalo, New York, AIAA-89-1895.Google Scholar
Tanno, H., Komura, T., Sato, K., Itoh, K., Takahashi, M. & Fujii, K. 2009 Measurements of hypersonic boundary layer transition on cone models in the free-piston shock tunnel HIEST. In Proceedings of 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, FL, AIAA.Google Scholar
Tollmien, W.1929 Über die Entstehung der Turbulenz, also translated as the production of turbulence, 1931, NACA-TM-609.Google Scholar
VanDercreek, C. P.2010 Hypersonic application of focused schlieren and deflectometry. PhD thesis, University of Maryland, College Park, Maryland.Google Scholar
VanDercreek, C. P., Smith, M. S. & Yu, K. H.2010 Focused Schlieren and Deflectometry at AEDC Hypervelocity Wind Tunnel No. 9. In Proceedings of 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Chicago, Illinois. AIAA 2010-4209.Google Scholar
Wagnild, R. M.2012 High enthalpy effects on two boundary layer disturbances in supersonic and hypersonic flow. PhD thesis, University of Minnesota.Google Scholar
Weinstein, L. M. 1993 Large-field high-brightness focusing schlieren system. AIAA J. 31 (7), 12501255.Google Scholar
Wright, M. J., Candler, G. V. & Prampolini, M. 1996 Data-parallel lower-upper relaxation method for the Navier–Stokes equations. AIAA J. 34 (7), 13711377.Google Scholar
Zhong, X. & Wang, X. 2012 Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers. Annu. Rev. Fluid Mech. 44, 527561.CrossRefGoogle Scholar