Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T19:54:53.521Z Has data issue: false hasContentIssue false

On a Tollmien-Schlichting wave packet produced by a turbulent spot

Published online by Cambridge University Press:  19 April 2006

I. Wygnanski
Affiliation:
University of Southern California, Los Angeles Present address: School of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
J. H. Haritonidis
Affiliation:
University of Southern California, Los Angeles
R. E. Kaplan
Affiliation:
University of Southern California, Los Angeles

Abstract

Experimental investigations in the region following the passage of an isolated turbulent spot in a laminar boundary layer reveal the existence of a pair of oblique wave packets. These packets are swept at an angle of approximately 40°, and exhibit frequency and wave speed characteristics in agreement with predictions made for oblique Tollmien-Schlichting waves. No waves exist near the centreline of the spot.

Several observations of the breakdown of this ordered motion into a new turbulent spot are shown. This breakdown is accompanied by the appearance of an intense shear layer inclined to the wall.

Type
Research Article
Copyright
© 1979 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Betchov, R. & Criminale, W. O. 1967 Stability of Parallel Flows. New York: Academic Press.
Blackwelder, R. F. & Kaplan, F. E. 1976 J. Fluid Mech. 76, 89.
Cantwell, B., Coles, D. & Dimotakis, P. 1977 California Inst. Tech., Dept. Aeronaut. Interim Rep. ENG-7680150.
Chen, P. C. 1972 Ph.D. Thesis, University of South California.
Coles, D. & Barker, S. J. 1975 Turbulent Mixing in Nonreactive and Reactive Flows, p. 285. Plenum Press.
Drazin, P. G. & Howard, L. N. 1966 Advances in Applied Mechanics. New York: Academic Press.
Elder, J. 1960 J. Fluid Mech. 9, 235.
Emmons, H. W. 1951 J. Aero. Sci. 18, 490.
Gaster, M. 1968 J. Fluid Mech. 32, 173.
Gaster, M. & Grant, I. 1975 Proc. Roy. Soc. A 347, 253.
Kaplan, R. E. 1964 M.I.T. Rep. ASRL TR-116-1.
Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962 J. Fluid Mech. 12, 1.
Komoda, H. 1967 Phys. Fluids Suppl. 10, S87.
Komoda, H. 1974 Private communication (I.W.)
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F. 1970 J. Fluid Mech. 41, 283.
Kovasznay, L. S. G., Komoda, H. & Vasudeva, B. R. 1962 Proc. Heat Transfer Fluid Mech. Inst., Stanford Univ. Press.
Landahl, M. T. & Kaplan, R. E. 1965 Agardograph 97, part I, p. 363. Paris.
Mochizuki, M. 1961 J. Phys. Soc. Japan, 16, 995.
Oster, D., Wygnanski, I. & Fiedler, H. 1976 In Turbulence in Internal Flows (ed. S. N. B. Murthy), p. 67. Hemisphere Press.
Schubauer, G. B. & Klebanoff, P. S. 1956 N.A.C.A. Rep. no. 1289.
Schubauer, G. B. & Skramstad, H. K. 1947 N.A.C.A. Tech. Rep. no. 909.
Squire, H. B. 1933 Proc. Roy. Soc. A 142, 621.
Wazzan, A. R., Okamura, T. T. & Smith, A. M. O. 1968 DAC-67086, Sept. 1, 1968. McDonnell Douglas Corp.
Wygnanski, I., Sokolov, M. & Friedman, D. 1975 J. Fluid Mech. 69, 283. 1976 J. Fluid Mech. 78, 785.
Zilberman, M., Wygnanski, I. & Kaplan, R. E. 1976 Phys. Fluids Suppl. 20, S 258.