Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T11:05:35.818Z Has data issue: false hasContentIssue false

On accurately measuring statistics associated with small-scale structure in turbulent boundary layers using hot-wire probes

Published online by Cambridge University Press:  26 April 2006

J. C. Klewicki
Affiliation:
Turbulence Structure Laboratory, Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824-1226. USA
R. E. Falco
Affiliation:
Turbulence Structure Laboratory, Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824-1226. USA

Abstract

Spanwise vorticity measurements have been performed in zero-pressure-gradient boundary layers over the range 1010 < Rθ < 4850 (RθU θ/ν, where U is the free-stream velocity and θ is the momentum deficit thickness) using a four-wire probe. In addition, experiments quantifying the spatial and temporal resolution required to obtain an accurate statistical representation of the small-scale structure of wall-bounded turbulence were performed. Furthermore, a thorough investigation of statistical convergence for a variety of fluctuating quantities was performed. Comparisons with earlier high-resolution studies indicate that the maximum value of u′/uτ increases with increasing Reynolds number over the given Rθ range (u′ ≡ r.m.s. u, and uτ is the friction velocity). It is suggested that detecting this dependence provides a good measure of probe resolution. In general it was found that statistics of velocity gradients were distinctly more sensitive to finite probe size than velocity statistics. Wire spacing experiments suggest that Wyngaard's (1969) criterion is to a good approximation valid even under anisotropic conditions. Furthermore, it was found that instantaneously spatial averaging of ∂u/∂t caused significant attenuation in the resulting r.m.s., and that this averaging procedure is sensitive to the level of mean shear. A simple method of estimating how noise in the u-velocity signals enters into the ∂u/∂y signals is presented. The convergence study shows that statistical convergence criteria developed from free-shear flows severely underestimates the averaging times required in boundary layers. A table of general convergence criteria is provided.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfredsson, P. H., Johansson, A. V., Haritonidis, J. H. & Eckelmann, H., 1988 Phys. Fluids 31, 1026.
Andreopoulos, J., Durst, F., Zarić, Z. & Jovanovic, J. 1984 Exps. Fluids 2, 7.
Antonia, R. A., Browne, L. W. B. & Chambers, A. J. 1985 Phys. Fluids 28, 420.
Antonia, R. A., Satyaprakash, B. R. & Hussain, A. K. M. F. 1982 J. Fluid Mech. 119, 55.
Balint, J. L., VukoslavčEvić, P. & Wallace, J. M. 1987a In Advances in Turbulence, Proc. First European Turbulence Conf., Lyon, France (ed. G. Comte-Bellot & J. Mathieu), p. 456. Springer.
Balint, J. L., Vukoslavčević, P. & Wallace, J. M. 1987b Bull. Am. Phys. Soc. 32, 2051.
Blackwelder, R. F. & Eckelmann, H., 1979 J. Fluid Mech. 94, 577.
Blackwelder, R. F. & Haritonidis, J. H., 1983 J. Fluid Mech. 132. 87.
Blackwelder, R. F. & Kovasznay, L. S. G. 1970 Rep. DA-31-124-ARO-D-313. The Johns Hopkins University Dept. of Mech., Baltimore, Maryland.
Böttcher, J. & Eckelmann, H. 1985 Exps. Fluids 3, 87.
Browne, L. W. B., Antonia, R. A. & Shah, D. A., 1987 J. Fluid Mech. 179, 307.
Champagne, F. H., Sleicher, C. A. & Wehrmann, O. H., 1967 J. Fluid Mech. 28, 153.
Coles, D. E.: 1968 In Proc. of Computation of Turbulent Boundary Layers, AFOSR-IFP-Stanford Conf. (ed. D. Coles & X. Hirst). Stanford University, California.
Corrsin, S. & Kistler, A. L., 1954 NACA TN 3133.
Debray, B. G.: 1967 Brit. Aero. Res. Counc. Rep. 29–271.
Eckelmann, H., Nychas, S. G., Brodkey, R. S. & Wallace, J. M., 1977 Phys. Fluids Suppl. 20, S225.
Emmerling, R.: 1973 Bericht Max-Planck-Institut für Stromungsforschung, 9/1973.
Falco, R. E.: 1980 AIAA-80-1356.
Foss, J. F., Ali, S. K. & Haw, R. C., 1986a In Advances in Turbulence, Proc. First European Turbulence Conf., Lyon, France (ed. G. Comte-Bellot & J. Mathieu), p. 446. Springer.
Foss, J. F., Klewicki, C. L. & Disimile, P. J., 1986b NASA CR 178098.
Gebhart, B.: 1971 Heat Transfer, 2nd edn, p. 326. McGraw-Hill.
Hogenes, J. G. A. & Hanratty, T. J. 1982 J. Fluid Mech. 124, 363.
Johansson, A. V. & Alfredsson, P. H., 1983 J. Fluid Mech. 137, 409.
Johnson, F. D. & Eckelmann, H., 1983 Phys. Fluids 26, 2408.
Kastrinakis, E. G.: 1977 Bericht Max-Planck-Institut für Stromungsforschung, 5/1977.
Kastrinakis, E. G. & Eckelmann, H., 1983 J. Fluid Mech. 137, 165.
Kastrinakis, E. G., Eckelmann, H. & Willmarth, W. W., 1979 Rev. Sci. Instrum. 50, 759.
Klebanoff, P. S.: 1954 NACA TN 3178.
Klewicki, J. C.: 1989 On the interactions between the inner and outer region motions in turbulent boundary layers. Ph.D. dissertation, Michigan State University, East Lansing, Michigan.
Klewicki, J. C. & Falco, R. E., 1988 Rep. TSL-88-4. Dept. Mech. Eng., Michigan State University, East Lansing, Michigan.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W., 1967 J. Fluid Mech. 30, 165.
Kovasznay, L. S. G.: 1950 Q. Prog. Rep. Aero Dept Contract NORD-8036-JHB-3D. The Johns Hopkins University.
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F., 1970 J. Fluid Mech. 41, 283.
Kovasznay, L. S. G., Komoda, H. & Vasudeva, B. R., 1962 In Proc. Heat Transfer and Fluid Mech. Inst., p. 1. Stanford University Press.
Kreplin, H. P. & Eckelmann, H., 1979 Phys. Fluids 22, 1233.
Ligrani, P. M. & Bradshaw, P., 1987 Exps. Fluids 5, 407.
Loerke, R. I. & Nagib, H. M., 1977 AGARD Rep. R-598, AD-749-891.
Lovett, J. A.: 1982 The flow fields responsible for the generation of turbulence near the wall in turbulent shear flows. M. S. thesis. Michigan State University.
Mestayer, P.: 1982 J. Fluid Mech. 124, 475.
Murlis, J., Tsai, H. M. & Bradshaw, P., 1982 J. Fluid Mech. 122, 13.
Purtell, L. P., Klebanoff, P. S. & Buckley, F. T., 1981 Phys. Fluids 24, 802.
Rashidnia, N.: 1985 Changes in the turbulent boundary layer structure associated with net drag reduction by outer layer manipulators. Ph.D. dissertation, Michigan State University, East Lansing, Michigan.
Roberts, J. B.: 1973 Aeronaut. J. 77, 406.
Schewe, G.: 1983 J. Fluid Mech. 134, 311.
Signor, D. B.: 1982 A study of intermediate scale coherent motions in the outer region of turbulent boundary layers. M. S. thesis, Michigan State University.
Subramanian, C. S., Kandola, B. S. & Bradshaw, P., 1985 IC Aero Rep. 85–01.
Tennekes, H. & Wyngaard, J. C., 1972 J. Fluid Mech. 55, 93.
Uberoi, M. S. & Kovasznay, L. S. G. 1953 Q. Appl. Maths X, 375.
Ueda, H. & Hinze, J. O., 1975 J. Fluid Mech. 67, 125.
Wallace, J. M., Brodkey, R. S. & Eckelmann, H., 1977 J. Fluid Mech. 83, 673.
Wei, T.: 1987 Reynolds number effects on the small scale structure of a turbulent channel flow. Ph.D. dissertation, University of Michigan, Ann Arbor, Michigan.
Willmarth, W. W. & Bogar, T. J., 1977 Phys. Fluids Suppl. 20, S9.
Willmarth, W. W. & Sharma, L. K., 1984 J. Fluid Mech. 142, 121.
Wyngaard, J. C.: 1968 J. Phys. E: Sci. Instrum. 1, 1105.
Wyngaard, J. C.: 1969 J. Phys. E: Sci. Instrum. 2, 983.