Hostname: page-component-857557d7f7-v48vw Total loading time: 0 Render date: 2025-11-28T16:30:11.778Z Has data issue: false hasContentIssue false

On effectiveness of optimal perturbation in hastening instability of counter-rotating vortex pair behind a wing

Published online by Cambridge University Press:  24 November 2025

Mohd. Suhail Naim
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Kanpur , UP 208016, India
Navrose*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Kanpur , UP 208016, India
Vincent Brion
Affiliation:
DAAA, ONERA, Institut Polytechnique de Paris, 92190 Meudon, France
*
Corresponding author: Navrose, navrose@iitk.ac.in

Abstract

We investigate the effectiveness of linear optimal perturbation (LOP) for the flow past a finite span wing in reducing the lifespan of its trailing vortex system. Two approaches, referred to as local and model analysis, are introduced and used for our investigation. Both analyses assume that the baseflow is parallel. Local analysis is suited for intermediate distance from the wing where both tip vortices (TVs) and trailing edge wake (TEW) are present. Its results suggest that the unperturbed baseflow is stable. The separation between TVs and TEW increases downstream and their dynamics appear to be uncoupled at large distance from the wing. When perturbation corresponding to LOP is added to the baseflow, the vortices are displaced forming a helical twist. With time, the maximum displacement initially increases and then saturates. The perturbation retains its compact wavepacket-like structure, and perturbation energy within the tip vortex remains nearly constant. In the model analysis, the far wake is modelled as a pair of counter-rotating $q$-vortices. For low Reynolds number, the flow is stable. However, for higher Reynolds number, the trailing vortices develop Crow instability. Its growth rate is found to be in good agreement with earlier studies. Instability leads to contact of vortices, resulting in the formation of vortex rings. The time for vortex contact decreases with increase in the strength of the initial perturbation. The results suggest that LOP is effective in reducing the lifespan of trailing vortices.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Antkowiak, A. & Brancher, P. 2004 Transient energy growth for the Lamb–Oseen vortex. Phys. Fluids 16 (1), L1L4.10.1063/1.1626123CrossRefGoogle Scholar
Antkowiak, A. & Brancher, P. 2007 On vortex rings around vortices: an optimal mechanism. J. Fluid Mech. 578, 295304.10.1017/S0022112007005198CrossRefGoogle Scholar
Brion, V. 2009 Stabilité des paires de tourbillons contra-rotatifs: application au tourbillon de jeu dans les turbomachines. PhD thesis, Ecole polytechnique, Palaiseau, France. thése de doctorat dirigée par Jacquin, L.Google Scholar
Brion, V., Sipp, D. & Jacquin, L. 2007 Optimal amplification of the crow instability. Phys. Fluids 19 (11), 111703.10.1063/1.2793146CrossRefGoogle Scholar
Brion, V., Sipp, D. & Jacquin, L. 2014 Linear dynamics of the Lamb–Chaplygin dipole in the two-dimensional limit. Phys. Fluids 26 (6), 064103.10.1063/1.4881375CrossRefGoogle Scholar
Crow, S.C. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8 (12), 21722179.10.2514/3.6083CrossRefGoogle Scholar
Crow, S.C. 1971 Comments on the danger of trailing vortices and on shortening their lifetimes. In Aircraft Wake Turbulence and Its Detection (ed. J.H. Olsen, A. Goldburg & M. Rogers), pp. 577–558. Plenum Press.Google Scholar
Crow, S.C. & Bate, E.R. 1976 Lifespan of trailing vortices in a turbulent atmosphere. J. Aircraft 13 (7), 476482.10.2514/3.44537CrossRefGoogle Scholar
Donnadieu, C., Ortiz, S., Chomaz, J.M. & Billant, P. 2009 Three-dimensional instabilities and transient growth of a counter-rotating vortex pair. Phys. Fluids 21 (9), 094102.10.1063/1.3220173CrossRefGoogle Scholar
Edstrand, A.M., Davis, T.B., Schmid, P.J., Taira, K. & Cattafesta, L.N. 2016 On the mechanism of trailing vortex wandering. J. Fluid Mech. 801, R1.10.1017/jfm.2016.440CrossRefGoogle Scholar
Edstrand, A.M., Schmid, P.J., Taira, K. & Cattafesta, L.N. 2018 a A parallel stability analysis of a trailing vortex wake. J. Fluid Mech. 837, 858895.10.1017/jfm.2017.866CrossRefGoogle Scholar
Edstrand, A.M., Sun, Y., Schmid, P.J., Taira, K. & Cattafesta, L.N. 2018 b Active attenuation of a trailing vortex inspired by a parabolized stability analysis. J. Fluid Mech. 855, R2.10.1017/jfm.2018.701CrossRefGoogle Scholar
Fabre, D., Sipp, D. & Jacquin, L. 2006 Kelvin waves and the singular modes of the Lamb–Oseen vortex. J. Fluid Mech. 551, 235274.10.1017/S0022112005008463CrossRefGoogle Scholar
Fischer, P., Lottes, J. & Kerkemeier, S. 2008 nek5000. Web page. Available at: https://nek5000.mcs.anl.gov.Google Scholar
Jacquin, L. & Crouch, J. 2005 Foreword. C. R. Phys. 6 (4), 393394.10.1016/j.crhy.2005.05.008CrossRefGoogle Scholar
Jacquin, L., Fabre, D., Sipp, D. & Coustols, E. 2005 Unsteadiness, instability and turbulence in trailing vortices. C. R. Phys. 6 (4-5), 399414.10.1016/j.crhy.2005.05.007CrossRefGoogle Scholar
Johnson, H. 2016 Nonlinear dynamics of wake vortices. PhD thesis, Mécanique des fluides Université Paris-Saclay (ComUE), France. thèse de doctorat dirigée par Jacquin, L.Google Scholar
Johnson, H., Brion, V. & Jacquin, L. 2016 Crow instability: nonlinear response to the linear optimal perturbation. J. Fluid Mech. 795, 652670.10.1017/jfm.2016.176CrossRefGoogle Scholar
Lee, S. & Marcus, P.S. 2025 Transient growth of a wake vortex and its initiation via inertial particles. J. Fluid Mech. 1014, A16.10.1017/jfm.2025.253CrossRefGoogle Scholar
Leweke, T., Le Dizes, S. & Williamson, C.H.K. 2016 Dynamics and instabilities of vortex pairs. Annu. Rev. Fluid Mech. 48, 507541.10.1146/annurev-fluid-122414-034558CrossRefGoogle Scholar
Leweke, T. & Williamson, C.H.K. 2011 Experiments on long-wavelength instability and reconnection of a vortex pair. Phys. Fluids 23 (2), 024101.10.1063/1.3531720CrossRefGoogle Scholar
Maji, A., Pandi, J.S.S. & Mittal, S. 2024 Aerodynamic center of a wing at low Reynolds number. Phys. Fluids 36 (3), 033627.10.1063/5.0195947CrossRefGoogle Scholar
Navrose, , Brion, V. & Jacquin, L. 2019 Transient growth in the near wake region of the flow past a finite span wing. J. Fluid Mech. 866, 399430.10.1017/jfm.2019.110CrossRefGoogle Scholar
Navrose, , Johnson, H.G., Brion, V., Jacquin, L. & Robinet, J.C. 2018 Optimal perturbation for two-dimensional vortex systems: route to non-axisymmetric state. J. Fluid Mech. 855, 922952.10.1017/jfm.2018.689CrossRefGoogle Scholar
Pandi, J.S.S. & Mittal, S. 2023 Streamwise vortices, cellular shedding and force coefficients on finite wing at low Reynolds number. J. Fluid Mech. 958, A10.10.1017/jfm.2023.80CrossRefGoogle Scholar
Pandi, J.S.S. & Mittal, S. 2025 Twisted finite wing at low Reynolds number: cellular vortex shedding, wing-tip vortex and aerodynamic performance. J. Fluid Mech. 1002, A28.10.1017/jfm.2024.1152CrossRefGoogle Scholar
Pradeep, D.S. & Hussain, F. 2006 Transient growth of perturbations in a vortex column. J. Fluid Mech. 550, 251288.10.1017/S0022112005008207CrossRefGoogle Scholar
Rojas, J.I., Melgosa, M. & Prats, X. 2021 Sensitivity analysis of maximum circulation of wake vortex encountered by en-route aircraft. Aerospace 8 (7), 194.10.3390/aerospace8070194CrossRefGoogle Scholar
Saffman, P.G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Sipp, D. 1999 Instabilités dans les écoulements tourbillonnaires. PhD thesis, Ecole Polytechnique, France.Google Scholar
Spalart, P.R. 1998 Airplane trailing vortices. Annu. Rev. Fluid Mech. 30, 107.10.1146/annurev.fluid.30.1.107CrossRefGoogle Scholar
Trefethen, L.N., Trefethen, A.E., Reddy, S.C. & Driscoll, T.A. 1993 Hydrodynamic stability without eigenvalues. Science 261 (5121), 578584.10.1126/science.261.5121.578CrossRefGoogle ScholarPubMed
Widnall, S.E. 1975 The structure and dynamics of vortex filaments. Annu. Rev. Fluid Mech. 7 (1), 141165.10.1146/annurev.fl.07.010175.001041CrossRefGoogle Scholar