Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T23:35:39.680Z Has data issue: false hasContentIssue false

On mathematical approaches to modelling slender liquid jets with a curved trajectory

Published online by Cambridge University Press:  13 April 2018

S. P. Decent*
Affiliation:
Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, UK
E. I. Părău
Affiliation:
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK
M. J. H. Simmons
Affiliation:
School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
J. Uddin
Affiliation:
School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
*
Email address for correspondence: s.decent@lancaster.ac.uk

Abstract

Slender liquid jets that have a curved trajectory have been examined in a range of papers using a method introduced in Wallwork et al. (Proc. IUTAM Symp. on Free-Surface Flows, 2000, Kluwer; J. Fluid Mech., vol. 459, 2002, pp. 43–65) and Decent et al. (J. Engng Maths, vol. 42, 2002, pp. 265–282), for jets that emerge from an orifice on the surface of a rotating cylindrical container, successfully comparing computational results to measurements arising from laboratory experiments. Wallwork et al. (2000, 2002) and Decent et al. (2002) based their analyses on the slenderness of the jet, and neglected the torsion of the centreline of the jet, which is valid since in most situations examined the torsion is zero or small. Shikhmurzaev & Sisoev (J. Fluid Mech., vol. 819, 2017, pp. 352–400) used differential geometry and incorporated the torsion. This paper shows that these two methods produce identical results at leading order when the torsion is zero or when the torsion is $O(1)$, in an asymptotic framework based upon the slenderness of the jet, and shows that the method of Wallwork et al. (2000, 2002) and Decent et al. (2002) is accurate for parameters corresponding to scenarios previously examined and also when the torsion is $O(1)$. It is shown that the method of Shikhmurzaev & Sisoev (2017) should be used when the torsion is asymptotically large or when the jet is not slender.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arne, W., Marheineke, N., Meister, A. & Wegener, R. 2010 Numerical analysis of cosserat rod and string models for viscous jets in rotational spinning processes. Math. Models Meth. Appl. Sci. 20, 19411965.10.1142/S0218202510004738Google Scholar
Baird, M. H. I. & Davidson, J. F. 1962 Annular jets – fluid dynamics. Chem. Engng Sci. 17, 467472.10.1016/0009-2509(62)85015-5Google Scholar
Decent, S. P., King, A. C., Simmons, M. J. H., Parau, E. I., Wallwork, I. M., Gurney, C. & Uddin, J. 2009 The trajectory and stability of a spiralling liquid jet: viscous theory. Appl. Math. Model. 33, 42834302.10.1016/j.apm.2009.03.011Google Scholar
Decent, S. P., King, A. C. & Wallwork, I. M. 2002 Free jets spun from a prilling tower. J. Engng Maths 42, 265282.10.1023/A:1016127207992Google Scholar
Entov, V. M. & Yarin, A. L. 1984 The dynamics of thin liquid jets in air. J. Fluid Mech. 140, 91111.10.1017/S0022112084000525Google Scholar
Falcucci, G., Jannelli, E., Ubertini, S. & Succi, S. 2013 Direct numerical evidence of stress-induced cavitation. J. Fluid Mech. 728, 362375.10.1017/jfm.2013.271Google Scholar
Falcucci, G., Succi, S. & Ubertini, S. 2010a Magnetically driven droplet break-up and vaporization: a lattice Boltzmann study. J. Stat. Mech. 2010 (5), P05010.10.1088/1742-5468/2010/05/P05010Google Scholar
Falcucci, G., Ubertini, S., Bella, G., De Maio, A. & Palpacelli, S. 2010b Lattice Boltzmann modeling of diesel spray formation and break-up. SAE Int. J. Fuels Lubr. 3 (1), 582593.10.4271/2010-01-1130Google Scholar
Falcucci, G., Ubertini, S., Biscarini, C. & Di Francesco, S. 2011a Lattice Boltzmann methods for multiphase flow simulations across scales. Commun. Comput. Phys. 9, 269296.10.4208/cicp.221209.250510aGoogle Scholar
Falcucci, G., Ubertini, S., Chiappini, D. & Succi, S. 2011b Modern lattice Boltzmann methods for multiphase microflows. IMA J. Appl. Maths 76, 712725.10.1093/imamat/hxr014Google Scholar
Finnicum, D. S., Weinstein, S. J. & Ruschak, K. J. 1993 The effect of applied pressure on the shape of a two-dimensional liquid curtain falling under the influence of gravity. J. Fluid Mech. 255, 647665.10.1017/S0022112093002629Google Scholar
Gramlich, S. & Piesche, M. 2012 Numerical and experimental investigations on the breakup of particle laden liquid jets in the centrifugal field. Chem. Engng Sci. 84, 408416.10.1016/j.ces.2012.08.011Google Scholar
Gurney, C. J., Hawkins, V. L., Simmons, M. J. H. & Decent, S. P. 2010 The impact of multi-frequency and forced disturbances upon drop distributions in prilling. Chem. Engng Sci. 65, 34743484.10.1016/j.ces.2010.02.030Google Scholar
Hawkins, V. L., Gurney, C. J., Decent, S. P., Simmons, M. J. H. & Uddin, J. 2010 Unstable waves on a curved non-Newtonian liquid jet. J. Phys. A: Math. Theor. 43, 055501.10.1088/1751-8113/43/5/055501Google Scholar
Keller, J. B. & Geer, J. 1973 Flows of thin streams with free boundaries. J. Fluid Mech. 59, 417432.10.1017/S0022112073001631Google Scholar
Marheineke, N., Liljegren-Sailer, B., Lorenz, M. & Wegener, R. 2016 Asymptotics and numerics for the upper-convected Maxwell model describing transient curved viscoelastic jets. Math. Models Meth. Appl. Sci. 26, 569600.10.1142/S021820251650010XGoogle Scholar
Marheineke, N. & Wegener, R. 2009 Asymptotic model for the dynamics of curved viscous figres with surface tension. J. Fluid Mech. 622, 345369.10.1017/S0022112008005259Google Scholar
Ng, C.-L., Sankarakrishnan, R. & Sallam, K. A. 2008 Bag breakup of nonturbulent liquid jets in crossflow. Intl J. Multiphase Flow 34, 241259.10.1016/j.ijmultiphaseflow.2007.07.005Google Scholar
Noroozi, S., Alamdari, H., Arne, W., Larson, R. G. & Taghavi, S. M. 2017 Regularized string model for nanofibre formation in centrifugal spinning methods. J. Fluid. Mech. 822, 202234.10.1017/jfm.2017.279Google Scholar
Panda, S., Marheineke, N. & Wegener, R. 2008 Systematic derivation of an asymptotic model for the dynamics of curved viscous fibres. Math. Meth. Appl. Sci. 31, 11531173.10.1002/mma.962Google Scholar
Părău, E. I., Decent, S. P., King, A. C., Simmons, M. J. H. & Wong, D. 2006 Nonlinear travelling waves on a spiralling liquid jet. Wave Motion 43, 599618.10.1016/j.wavemoti.2006.05.004Google Scholar
Părău, E. I., Decent, S. P., Simmons, M. J. H., Wong, D. & King, A. C. 2007 Nonlinear viscous liquid jets from a rotating orifice. J. Engng Maths 57, 159179.10.1007/s10665-006-9118-2Google Scholar
Partridge, L., Wong, D. C. Y., Simmons, M. J. H., Părău, E. I. & Decent, S. P. 2005 Experimental and theoretical description of the break-up of curved liquid jets in the prilling process. Chem. Engng Res. Des. 83(A11), 12671275.10.1205/cherd.05090Google Scholar
Ramos, J. J. 1996 Upward and downward annular liquid jets: conservation properties, singularities and numerical errors. Appl. Math. Model 20, 440458.10.1016/0307-904X(95)00164-FGoogle Scholar
Riahi, D. N. 2017 Modeling and computation of nonlinear rotating polymeric jets during forcespinning process. Intl J. Non-Linear Mech. 92, 17.10.1016/j.ijnonlinmec.2017.03.004Google Scholar
Ribe, N. M. 2004 Coiling of viscous jets. Proc. R. Soc. Lond. A 460, 32233239.10.1098/rspa.2004.1353Google Scholar
Ribe, N. M., Habibi, M. & Bonn, D. 2006 Stability of liquid rope coiling. Phys. Fluids 18, 084102.10.1063/1.2336803Google Scholar
Shikhmurzaev, Y. D. & Sisoev, G. M. 2017 Spiralling liquid jets: verifiable mathematical framework, trajectories and peristaltic waves. J. Fluid Mech. 819, 352400.10.1017/jfm.2017.169Google Scholar
Uddin, J. & Decent, S. P. 2012 Drop formation in rotating non-Newtonian jets with surfactants. IMA J. Appl. Maths 77, 8696.10.1093/imamat/hxr076Google Scholar
Uddin, J., Decent, S. P. & Simmons, M. J. H. 2006 The instability of shear thinning and shear thickening spiralling liquid jets: linear theory. Trans. ASME J. Fluids Engng 128, 968975.10.1115/1.2238876Google Scholar
Uddin, J., Decent, S. P. & Simmons, M. J. H. 2008a The effect of surfactants on the instability of a rotating liquid jet. Fluid Dyn. Res. 40, 827851.10.1016/j.fluiddyn.2008.06.002Google Scholar
Uddin, J., Decent, S. P. & Simmons, M. J. H. 2008b Nonlinear waves along rotating non-Newtonian liquid jets. Intl J. Engng Sci. 46, 12531265.10.1016/j.ijengsci.2008.06.016Google Scholar
Uddin, J., Decent, S. P. & Simmons, M. J. H. 2009 Curved non-Newtonian liquid jets. Trans. ASME J. Fluids Engng 131, 091203.10.1115/1.3203202Google Scholar
Valipouri, A., Ravandi, S. A. H., Pishevar, A. & Parau, E. I. 2015 Experimental and numerical study on isolated and non-isolated jet behavior through centrifuge spinning system. Intl J. Multiphase Flow 69, 93101.10.1016/j.ijmultiphaseflow.2014.10.005Google Scholar
Wallwork, I. M.2002 The trajectory and stability of a spiralling liquid jet. PhD thesis, School of Mathematics and Statistics, University of Birmingham.Google Scholar
Wallwork, I. M., Decent, S. P. & King, A. C. 2000 The trajectory and stability of a spiralling liquid jet. In Proc. IUTAM Symp. Free-Surface Flows (ed. King, A. C. & Shikhmurzaev, Y. D.). Kluwer.Google Scholar
Wallwork, I. M., Decent, S. P., King, A. C. & Schulkes, R. M. S. M. 2002 The trajectory and stability of a spiralling liquid jet. Part 1. Inviscid theory. J. Fluid Mech. 459, 4365.10.1017/S0022112002008108Google Scholar
Wong, D., Simmons, M. J. H., Decent, S. P., Părău, E. I. & King, A. C. 2004 Break-up dynamics and drop size distributions created from spiralling liquid jets. Intl J. Multi-Phase Flow 30, 499520.10.1016/j.ijmultiphaseflow.2004.04.002Google Scholar
Zhmayev, Y., Divvela, M. J., Ruo, A., Huang, T. & Joo, Y. L. 2015 The jetting behavior of viscoelastic Boger fluids during centrifugal spinning. Phys. Fluids 27, 123101.10.1063/1.4936391Google Scholar