Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T00:29:48.672Z Has data issue: false hasContentIssue false

On the application of successive plane strains to grid-generated turbulence

Published online by Cambridge University Press:  18 April 2017

J. N. Gence
Affiliation:
Laboratoire de Mécanique des Fluides, Ecole Centrale de Lyon
J. Mathieu
Affiliation:
Laboratoire de Mécanique des Fluides, Ecole Centrale de Lyon

Extract

A grid-generated turbulence is subjected to a pure plane strain and the principal axes of the Reynolds stress tensor become those of the strain. This ‘oriented’ homogeneous turbulence is then submitted to a new strain the principal axes of which have a different orientation. We show that in such a situation it is possible to observe a transfer of energy from the fluctuating motion to the mean one. Such transfer is necessarily associated with a forced decay of the anisotropy of the motion. A detailed analysis of the reorientation of the principal axes of the Reynolds stress tensor in the frame of those of the second strain gives an explanation of the evolution of the principal axes of the Reynolds stress tensor in a shear flow.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelob, Gr. K. 1960 The Theory of Homogeneous Turbulence, p. 000. Cambridge University Press.Google Scholar
Batchelob, G. K. & Pboudman, R. I. 1954 The effect of rapid distortion of a fluid in turbulent motion. Quart. J. Mech. Appl. Math. 7, 83103.Google Scholar
Boschiebo, M., Gence, J. N. & Mathieu, J. 1977 Reponse d'une turbulence homogene a un changement brusque de position des axes principaux du tenseur de deformation. C. R. Acad. Sci. Paris, B 285, 89.Google Scholar
Champagne, F. M., Habbis, V. G. & Cobbsin, S. 1970 Experiments on nearly homogeneous turbulent shear flow. J. Fluid Mech. 41, 81.CrossRefGoogle Scholar
Cotjbseau, C. 1974 Contribution a I'analyse de la turbulence homogene et anisotrope. These de Doctorat d'Etat, Universite de Lyon.Google Scholar
Cbaya, P. 1958 Contribution a l'analyse de la turbulence associe a des vitesses moyennes. These dans Publication Scientifique et Technique no. 345, Ministere de I'air, France. Google Scholar
Eskinazi, S. 1964 Ecoulements turbulents avec production negative d'energie. J. Mec. 3, 313322.Google Scholar
Fttgita, M. & Kovasznay, L. S. 1968 Measurement of Reynolds stress by a single rotated hot wire anemometer. Rev. of Scientific Instruments, 39, 15511555.Google Scholar
Harris, V. G., Graham, J. H. A. & Corrsin, S. 1977 Further experiments in nearly homogeneous turbulent shear flow. J. Fluid Mech. 81, 657.CrossRefGoogle Scholar
Lxjmley, J. L. 1970 Toward a turbulent constitutive relation. J. Fluid Mech. 41, 413.Google Scholar
Lxtmley, J. L. 1975 Prediction methods for turbulent flows. Von Kdrmdn Institute 75, Lecture Series 76.Google Scholar
Ltjmley, J. K. & Newman, G. R. 1977 The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82, 161.Google Scholar
Marechal, J. 1970 Contribution a l'tude de la deformation plane de la turbulence. These de Doctorat es Sciences, Universite de Grenoble.Google Scholar
Rose, W. G. 1966 Results of an attempt to generate a homogeneous turbulent shear flow. J. Fluid Mech. 25, 97.Google Scholar
Townsend, A. A. 1954 The uniform distortion of homogeneous turbulence. Quart. J. Mech. Appl. Math. 11, 000.Google Scholar
Tucker, J. & Reynolds, A. J. 1968 The distortion of turbulence by irrotational plane strain. J. Fluid Mech. 32, 657.Google Scholar