Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-14T06:40:24.280Z Has data issue: false hasContentIssue false

On the effect of electrostatic surface forces on dielectric falling films

Published online by Cambridge University Press:  13 November 2020

Wilko Rohlfs*
Affiliation:
Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, 52056Aachen, Germany
Liam M. F. Cammiade
Affiliation:
Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, 52056Aachen, Germany
Manuel Rietz
Affiliation:
Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, 52056Aachen, Germany
Benoit Scheid
Affiliation:
TIPs, Université Libre de Bruxelles C.P. 165/67, Avenue F.D. Roosevelt 50, 1050Bruxelles, Belgium
*
Email address for correspondence: rohlfs@wsa.rwth-aachen.de

Abstract

The destabilization of a dielectric film flow due to an electrostatic surface force is investigated. A weighted residuals integral boundary-layer (WIBL) model is derived and validated against full numerical simulations. The equations of the WIBL model indicate that the electrostatic surface force contributes to the evolution equations in a similar mathematical way as the volumetric gravitational force. Contrary to gravity, an additional electrostatic contribution ($\chi _2$) arises, whose impact increases nonlinearly with decreasing capacitor plate distance. This nonlinear contribution causes a fold of the branch of solutions of the dynamical system and, thus, the co-existence of a low amplitude solution that is stable against infinitesimal disturbances and an unstable high amplitude solution. In time-dependent simulations, the fold coincides with the limit in the parameter space beyond which a finite-time blow-up occurs with an unsaturated growth of the main wave hump leading to wave pinch-off and drop formation. Thus, a phase diagram can be constructed by tracking this fold. The shape of the main wave prior to blow-up depends on the electrostatic parameter $\chi _2$. If this parameter is zero, the force is equivalent to a hanging film flow configuration and dripping occurs with a drop-shaped structure. With an increasing contribution of the parameter $\chi _2$, Taylor-cone waves occur prior to finite-time blow-up, leading to jetting. Finally, the transition from stable to unstable waves is investigated in terms of the two dimensionless electric parameters, the Reynolds, and viscous dissipation numbers. Imposing the most amplified wavelength, a transition border between stable solutions and jetting is identified.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barannyk, L. L., Papageorgiou, D. T., Petropoulos, P. G. & Vanden-Broeck, J.-M. 2015 Nonlinear dynamics and wall touch-up in unstably stratified multilayer flows in horizontal channels under the action of electric fields. SIAM J. Appl. Maths 75 (1), 92113.CrossRefGoogle Scholar
Brackbill, J., Kothe, D. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100, 335354.CrossRefGoogle Scholar
Brun, P.-T., Damiano, A., Rieu, P., Balestra, G. & Gallaire, F. 2015 Rayleigh–Taylor instability under an inclined plane. Phys. Fluids 27 (8), 084107.CrossRefGoogle Scholar
Di Marco, P. & Grassi, W. 1994 Saturated pool boiling enhancement by means of an electric field. J. Enhanced Heat Transfer 1 (1), 99114.CrossRefGoogle Scholar
Dietze, G. F. & Ruyer-Quil, C. 2014 Films in narrow tubes. J. Fluid Mech. 762, 68109.CrossRefGoogle Scholar
Doedel, E. J. 2008 Auto07p Continuation and Bifurcation Software for Ordinary Differential Equations. Montreal Concordia University.Google Scholar
Hirt, C. W. & Nichols, B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201225.CrossRefGoogle Scholar
Jasak, H. 1996 Error analysis and estimation for the Finite Volume Method with applications to fluid flows. PhD thesis, Imperial College, University of London.Google Scholar
Kalliadasis, S., Ruyer-Quil, C., Scheid, B. & Velarde, M. 2013 Falling Liquid Films. Springer.Google Scholar
Kim, P., Duprat, C., Tsai, S. S. H. & Stone, H. A. 2011 Selective spreading and jetting of electrically driven dielectric films. Phys. Rev. Lett. 107, 034502.CrossRefGoogle ScholarPubMed
Kofman, N., Rohlfs, W., Gallaire, F., Scheid, B. & Ruyer-Quil, C. 2018 Prediction of two-dimensional dripping onset of a liquid film under an inclined plane. Intl J. Multiphase Flow 104, 286293.CrossRefGoogle Scholar
Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S. & Zanetti, G. 1994 Modelling merging and fragmentation in multiphase flows with surfer. J. Comput. Phys. 113 (1), 134147.CrossRefGoogle Scholar
Li, F., Ozen, O., Aubry, N., Papageorgiou, D. T. & Petropoulos, P. G. 2007 Linear stability of a two-fluid interface for electrohydrodynamic mixing in a channel. J. Fluid Mech. 583, 347377.CrossRefGoogle Scholar
Papageorgiou, D. T. 2019 Film flows in the presence of electric fields. Annu. Rev. Fluid Mech. 51 (1), 155187.CrossRefGoogle Scholar
Rietz, M., Scheid, B., Gallaire, F., Kofman, N., Kneer, R. & Rohlfs, W. 2017 Dynamics of falling films on the outside of a vertical rotating cylinder: waves, rivulets and dripping transitions. J. Fluid Mech. 832, 189211.CrossRefGoogle Scholar
Rohlfs, W. 2016 Wave characteristics of falling liquid films under the influence of positive and negative inclination or electrostatic forces. PhD thesis, RWTH Aachen University.Google Scholar
Rohlfs, W., Dietze, G. F., Haustein, D. & Kneer, R. 2012 a Two-phase electrohydrodynamic simulations using a volume-of-fluid approach: a comment. J. Comput. Phys. 231, 44544463.CrossRefGoogle Scholar
Rohlfs, W., Dietze, G. F., Haustein, H. D., Tsvelodub, O. Y. & Kneer, R. 2012 b Experimental investigation into three-dimensional wavy liquid films under the influence of electrostatic forces. Exp. Fluids 53 (4), 10451056.CrossRefGoogle Scholar
Rohlfs, W., Pischke, P. & Scheid, B. 2017 Hydrodynamic waves in films flowing under an inclined plane. Phys. Rev. Fluids 2 (4), 044003.CrossRefGoogle Scholar
Rohlfs, W. & Scheid, B. 2015 Phase diagram for the onset of circulating waves and flow reversal in inclined falling films. J. Fluid Mech. 763, 322351.CrossRefGoogle Scholar
Rusche, H. 2002 Computational fluid dynamics of dispersed two-phase flows at high phase fractions. PhD thesis, Imperial Collage, University of London.Google Scholar
Ruyer-Quil, C. & Manneville, P. 2000 Improved modeling of flows down inclined planes. Eur. Phys. J. B 15, 357369.CrossRefGoogle Scholar
Scheid, B., Kofman, N. & Rohlfs, W. 2016 Critical inclination for absolute/convective instability transition in inverted falling films. Phys. Fluids 28 (4), 044107.CrossRefGoogle Scholar
Scheid, B., Ruyer-Quil, C., Kalliadasis, S., Velarde, M. G. & Zeytounian, R. K. 2005 a Thermocapillary long waves in a liquid film flow. Part 2. Linear stability and nonlinear waves. J. Fluid Mech. 538, 223244.CrossRefGoogle Scholar
Scheid, B., Ruyer-Quil, C., Thiele, U., Kabov, O. A., Legros, J. C. & Colinet, P. 2005 b Validity domain of the Benney equation including the Marangoni effect for closed and open flows. J. Fluid Mech. 527, 303335.CrossRefGoogle Scholar
Suryo, R. & Basaran, O. A. 2006 Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid. Phys. Fluids 18 (8), 082102.CrossRefGoogle Scholar
Tomar, G., Gerlach, D., Biswas, G., Alleborn, N., Sharma, A., Durst, F., Welch, S. & Delgado, A. 2007 Two-phase electrohydrodynamic simulations using a volume-of-fluid approach. J. Comput. Phys. 227, 12671285.CrossRefGoogle Scholar
Tomlin, R. J., Cimpeanu, R. & Papageorgiou, D. T. 2020 Instability and dripping of electrified liquid films flowing down inverted substrates. Phys. Rev. Fluids 5 (1).CrossRefGoogle Scholar
Tomlin, R. J., Papageorgiou, D. T. & Pavliotis, G. A. 2017 Three-dimensional wave evolution on electrified falling films. J. Fluid Mech. 822, 5479.CrossRefGoogle Scholar
Tseluiko, D. & Papageorgiou, D. T. 2006 Wave evolution on electrified falling films. J. Fluid Mech. 556, 361386.CrossRefGoogle Scholar
Ubbink, O. 1997 Numerical prediction of two fluid systems with sharp interfaces. PhD thesis, Imperial College, University of London.Google Scholar
Uguz, A. K. & Aubry, N. 2008 Quantifying the linear stability of a flowing electrified two-fluid layer in a channel for fast electric times for normal and parallel electric fields. Phys. Fluids 20 (9), 092103.CrossRefGoogle Scholar
Uguz, A. K., Ozen, O. & Aubry, N. 2008 Electric field effect on a two-fluid interface instability in channel flow for fast electric times. Phys. Fluids 20 (3), 031702.CrossRefGoogle Scholar
Van Dyke, M. 1975 Perturbation methods in Fluid Mechanics/Annotated Edition. Parabolic Press.Google Scholar
Wang, Q. & Papageorgiou, D. T. 2016 Using electric fields to induce patterning in leaky dielectric fluids in a rod-annular geometry. IMA J. Appl. Maths 83 (1), 2452.Google Scholar
Wray, A., Matar, O. & Papageorgiou, D. 2017 Accurate low-order modeling of electrified falling films at moderate Reynolds number. Phys. Rev. Fluids 2 (6).CrossRefGoogle Scholar
Wray, A. W., Papageorgiou, D. T. & Matar, O. K. 2013 Electrified coating flows on vertical fibres: enhancement or suppression of interfacial dynamics. J. Fluid Mech. 735, 427456.CrossRefGoogle Scholar