Published online by Cambridge University Press: 23 October 2013
In nature, water waves usually propagate in groups and the open question about the characteristics of the highest possible wave in a group is of significant theoretical and practical interest. We examine the problem of the highest non-breaking wave in a wave group by direct numerical simulations of the exact Euler equations. The main aim of the study is twofold: (i) to describe the highest wave in a group in fully nonlinear setting and find its dependence on parameters; (ii) to examine correspondence between the exact breather solutions of weakly nonlinear analytic theory based on the integrable nonlinear Schrödinger (NLS) equation and their strongly nonlinear analogues. In contrast to weakly nonlinear models the very notion of the highest wave is ill-defined: the maximal crest elevation, the maximal trough-to-crest height and the deepest trough all occur at close but different moments; correspondingly, we have to speak about distinctively different extreme waves. In the simulations small initial perturbation of a uniform wave train were prescribed in a way ensuring that the initial perturbation excites a single breather-type modulation. The ensuing growth results in higher wave magnitudes and takes longer time to develop compared with the NLS theory. The maxima of crest elevation noticeably exceed their weakly nonlinear analogues. The wave with the highest crest differs significantly from the unmodulated wave: the local wavelength contracts considerably, the crest becomes noticeably higher; the vicinity of the crest of such an extreme wave is close to that of the limiting Stokes periodic wave. Thus, the shape of the maximal crest wave is almost universal, i.e. it practically does not depend on the way the wave group evolved, or even whether there was initially more than one group. The evolution of a single NLS breather has been shown to have a qualitatively similar but quantitatively quite different analogue in the fully nonlinear setting. The one-to-one mapping of the NLS breather solutions onto fully nonlinear ones has been constructed. The fully nonlinear breathers are found to be robust, which provides grounds for applying the results for developing short-term deterministic forecasting of rogue waves.