Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T19:47:18.177Z Has data issue: false hasContentIssue false

On the kurtosis of deep-water gravity waves

Published online by Cambridge University Press:  30 September 2015

Francesco Fedele*
Affiliation:
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30322, USA School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30322, USA
*
Email address for correspondence: fedele@gatech.edu

Abstract

In this paper, we revisit Janssen’s (J. Phys. Oceanogr., vol. 33 (4), 2003, pp. 863–884) formulation for the dynamic excess kurtosis of weakly nonlinear gravity waves in deep water. For narrowband directional spectra, the formulation is given by a sixfold integral that depends upon the Benjamin–Feir index and the parameter $R={\it\sigma}_{{\it\theta}}^{2}/2{\it\nu}^{2}$, a measure of short-crestedness for the dominant waves, with ${\it\nu}$ and ${\it\sigma}_{{\it\theta}}$ denoting spectral bandwidth and angular spreading. Our refinement leads to a new analytical solution for the dynamic kurtosis of narrowband directional waves described with a Gaussian-type spectrum. For multidirectional or short-crested seas initially homogeneous and Gaussian, in a focusing (defocusing) regime dynamic kurtosis grows initially, attaining a positive maximum (negative minimum) at the intrinsic time scale ${\it\tau}_{c}={\it\nu}^{2}{\it\omega}_{0}t_{c}=1/\sqrt{3R}$, or $t_{c}/T_{0}\approx 0.13/{\it\nu}{\it\sigma}_{{\it\theta}}$, where ${\it\omega}_{0}=2{\rm\pi}/T_{0}$ denotes the dominant angular frequency. Eventually the dynamic excess kurtosis tends monotonically to zero as the wave field reaches a quasi-equilibrium state characterized by nonlinearities mainly due to bound harmonics. Quasi-resonant interactions are dominant only in unidirectional or long-crested seas where the longer-time dynamic kurtosis can be larger than that induced by bound harmonics, especially as the Benjamin–Feir index increases. Finally, we discuss the implication of these results for the prediction of rogue waves.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annenkov, S. Y. & Shrira, V. I. 2013 Large-time evolution of statistical moments of wind–wave fields. J. Fluid Mech. 726, 517546.Google Scholar
Annenkov, S. Y. & Shrira, V. I. 2014 Evaluation of skewness and kurtosis of wind waves parameterized by jonswap spectra. J. Phys. Oceanogr. 44 (6), 15821594.Google Scholar
Chabchoub, A., Hoffmann, N. P. & Akhmediev, N. 2011 Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502.CrossRefGoogle Scholar
Chabchoub, A., Hoffmann, N., Onorato, M. & Akhmediev, N. 2012 Super rogue waves: Observation of a higher-order breather in water waves. Phys. Rev. X 2, 011015.Google Scholar
Dommermuth, D. G. & Yue, D. K. P. 1987 A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech. 184, 267288.CrossRefGoogle Scholar
Dyachenko, A. I. & Zakharov, V. E. 2011 Compact equation for gravity waves on deep water. J. Expl Theor. Phys. Lett. 93 (12), 701705.Google Scholar
Dysthe, K. B. 1979 Note on a modification to the nonlinear Schrödinger equation for application to deep water. Proc. R. Soc. Lond. A 369, 105114.Google Scholar
Fedele, F. 2008 Rogue waves in oceanic turbulence. Physica D 237, 21272131.CrossRefGoogle Scholar
Fedele, F. 2014 On certain properties of the compact Zakharov equation. J. Fluid Mech. 748, 692711.CrossRefGoogle Scholar
Fedele, F.2015 On oceanc rogue waves. Preprint, arXiv:1501.03370.Google Scholar
Fedele, F., Cherneva, Z., Tayfun, M. A. & Soares, C. G. 2010 Nonlinear schrodinger invariants and wave statistics. Phys. Fluids 22 (3), 036601.Google Scholar
Fedele, F. & Tayfun, M. A. 2009 On nonlinear wave groups and crest statistics. J. Fluid Mech. 620, 221239.Google Scholar
Gramstad, O. 2014 The zakharov equation with separate mean flow and mean surface. J. Fluid Mech. 740, 254277.Google Scholar
Janssen, P. A. E. M. 2003 Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 33 (4), 863884.2.0.CO;2>CrossRefGoogle Scholar
Janssen, P. 2009 On some consequences of the canonical transformation in the Hamiltonian theory of water waves. J. Fluid Mech. 637, 144.Google Scholar
Janssen, P. A. E. M.2014a Notes on kurtosis evolution for 2d wave propagation. Memorandum Research Department 60.9/PJ/0387. ECMWF.Google Scholar
Janssen, P. A. E. M. 2014b On a random time series analysis valid for arbitrary spectral shape. J. Fluid Mech. 759, 236256.CrossRefGoogle Scholar
Janssen, P. A. E. M. & Bidlot, J. R.2009 On the extension of the freak wave warning system and its verification. Tech. Memo 588. ECMWF.Google Scholar
Krasitskii, V. P. 1994 On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves. J. Fluid Mech. 272, 120.Google Scholar
Mori, N. & Janssen, P. A. E. M. 2006 On kurtosis and occurrence probability of freak waves. J. Phys. Oceanogr. 36 (7), 14711483.CrossRefGoogle Scholar
Onorato, M., Cavaleri, L., Fouques, S., Gramstad, O., Janssen, P. A. E. M., Monbaliu, J., Osborne, A. R., Pakozdi, C., Serio, M., Stansberg, C. T., Toffoli, A. & Trulsen, K. 2009 Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a three-dimensional wave basin. J. Fluid Mech. 627, 235257.Google Scholar
Shemer, L. & Alperovich, S. 2013 Peregrine breather revisited. Phys. Fluids 25, 051701.Google Scholar
Shemer, L. & Liberzon, D. 2014 Lagrangian kinematics of steep waves up to the inception of a spilling breaker. Phys. Fluids 26 (1), 016601.CrossRefGoogle Scholar
Shemer, L. & Sergeeva, A. 2009 An experimental study of spatial evolution of statistical parameters in a unidirectional narrow-banded random wavefield. J. Geophys. Res. 114, C01015.Google Scholar
Shemer, L., Sergeeva, A. & Liberzon, D. 2010a Effect of the initial spectrum on the spatial evolution of statistics of unidirectional nonlinear random waves. J. Geophys. Res. 115, C12039.Google Scholar
Shemer, L., Sergeeva, A. & Slunyaev, A. 2010b Applicability of envelope model equations for simulation of narrow-spectrum unidirectional random wave field evolution: experimental validation. Phys. Fluids 22 (1), 016601.CrossRefGoogle Scholar
Tayfun, M. A. 1980 Narrow-band nonlinear sea waves. J. Geophys. Res. 85 (C3), 15481552.Google Scholar
Tayfun, M. A. & Fedele, F. 2007 Wave-height distributions and nonlinear effects. Ocean Engng 34 (11–12), 16311649.CrossRefGoogle Scholar
Tayfun, M. A. & Lo, J. 1990 Nonlinear effects on wave envelope and phase. J. Waterways Port Coast. Ocean Engng 116, 79100.CrossRefGoogle Scholar
Toffoli, A., Gramstad, O., Trulsen, K., Monbaliu, J., Bitner-Gregersen, E. & Onorato, M. 2010 Evolution of weakly nonlinear random directional waves: laboratory experiments and numerical simulations. J. Fluid Mech. 664, 313336.CrossRefGoogle Scholar
Waseda, T., Kinoshita, T. & Tamura, H. 2009 Evolution of a random directional wave and freak wave occurrence. J. Phys. Oceanogr. 39 (3), 621639.CrossRefGoogle Scholar
Xiao, W., Liu, Y., Wu, G. & Yue, D. K. P. 2013 Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution. J. Fluid Mech. 720, 357392.CrossRefGoogle Scholar
Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190194.CrossRefGoogle Scholar
Zakharov, V. E. 1999 Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid. Eur. J. Mech. (B/Fluids) 18 (3), 327344.Google Scholar