Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T13:49:34.006Z Has data issue: false hasContentIssue false

On the mechanism of open-loop control of thermoacoustic instability in a laminar premixed combustor

Published online by Cambridge University Press:  03 December 2019

Amitesh Roy*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai600 036, Tamil Nadu, India
Sirshendu Mondal
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai600 036, Tamil Nadu, India Department of Mechanical Engineering, National Institute of Technology Durgapur, Durgapur713 209, West Bengal, India
Samadhan A. Pawar
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai600 036, Tamil Nadu, India
R. I. Sujith
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai600 036, Tamil Nadu, India
*
Email address for correspondence: amiteshroy94@yahoo.in

Abstract

We identify mechanisms through which open-loop control of thermoacoustic instability is achieved in a laminar combustor and characterize them using synchronization theory. The thermoacoustic system comprises two nonlinearly coupled damped harmonic oscillators – acoustic and unsteady heat release rate (HRR) field – each possessing different eigenfrequencies. The frequency of the preferred mode of HRR oscillations is less than the third acoustic eigenfrequency where thermoacoustic instability develops. We systematically subject the limit-cycle oscillations to an external harmonic forcing at different frequencies and amplitudes. We observe that forcing at a frequency near the preferred mode of the HRR oscillator leads to a greater than 90 % decrease in the amplitude of the limit-cycle oscillations through the phenomenon of asynchronous quenching. Concurrently, there is a resonant amplification in the amplitude of HRR oscillations. Further, we show that the flame dynamics plays a key role in controlling the frequency at which quenching is observed. Most importantly, we show that forcing can cause asynchronous quenching either by imposing out-of-phase relation between pressure and HRR oscillations or by inducing period-2 dynamics in pressure oscillations while period-1 in HRR oscillations, thereby causing phase drifting between the two subsystems. In each of the two cases, acoustic driving is very low and hence thermoacoustic instability is suppressed. We show that the characteristics of forced synchronization of the pressure and HRR oscillations are significantly different. Thus, we find that the simultaneous characterization of the two subsystems is necessary to quantify completely the nonlinear response of the forced thermoacoustic system.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balanov, A., Janson, N., Postnov, D. & Sosnovtseva, O. 2008 Synchronization: From Simple to Complex. Springer Science & Business Media.Google Scholar
Balusamy, S., Li, L. K. B., Han, Z. & Hochgreb, S. 2017 Extracting flame describing functions in the presence of self-excited thermoacoustic oscillations. Proc. Combust. Inst. 36 (3), 38513861.CrossRefGoogle Scholar
Balusamy, S., Li, L. K. B., Han, Z., Juniper, M. P. & Hochgreb, S. 2015 Nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing. Proc. Combust. Inst. 35 (3), 32293236.CrossRefGoogle Scholar
Bellows, B. D., Hreiz, A. & Lieuwen, T. C. 2008 Nonlinear interactions between forced and self-excited acoustic oscillations in premixed combustor. J. Propul. Power 24 (3), 628630.CrossRefGoogle Scholar
Cao, L. 1997 Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 110 (1–2), 4350.Google Scholar
Docquier, N. & Candel, S. M. 2002 Combustion control and sensors: a review. Prog. Energy Combust. Sci. 28 (2), 107150.CrossRefGoogle Scholar
Dowling, A. P., Hooper, N., Langhorne, P. J. & Bloxsidge, G. J. 1988 Active control of reheat buzz. AIAA J. 26 (7), 783790.Google Scholar
Dowling, A. P. & Morgans, A. S. 2005 Feedback control of combustion oscillations. Annu. Rev. Fluid Mech. 37, 151182.CrossRefGoogle Scholar
Fjeld, M. 1974 Relaxed controls in asynchronous quenching and dynamical optimization. Chem. Engng Sci. 29 (4), 921933.CrossRefGoogle Scholar
Fraser, A. M. & Swinney, H. L. 1986 Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33 (2), 11341140.CrossRefGoogle ScholarPubMed
Gabor, D. 1946 Theory of communication. Part 1. The analysis of information. J. Inst. Electrical Engrs-Part III: Radio Commun. Engng 93 (26), 429441.Google Scholar
Godavarthi, V., Pawar, S. A., Unni, V. R., Sujith, R. I., Marwan, N. & Kurths, J. 2018 Coupled interaction between unsteady flame dynamics and acoustic field in a turbulent combustor. Chaos 28 (11), 113111.CrossRefGoogle Scholar
Guan, Y., Gupta, V., Kashinath, K. & Li, L. K. B. 2019a Open-loop control of periodic thermoacoustic oscillations: experiments and low-order modelling in a synchronization framework. Proc. Combust. Inst. 37 (4), 53155323.CrossRefGoogle Scholar
Guan, Y., He, W., Murugesan, M., Li, Q., Liu, P. & Li, L. K. B. 2019b Control of self-excited thermoacoustic oscillations using transient forcing, hysteresis and mode switching. Combust. Flame 202, 262275.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (1), 473537.CrossRefGoogle Scholar
Juniper, M. P., Li, L. K. B. & Nichols, J. W. 2009 Forcing of self-excited round jet diffusion flames. Proc. Combust. Inst. 32 (1), 11911198.CrossRefGoogle Scholar
Juniper, M. P. & Sujith, R. I. 2018 Sensitivity and nonlinearity of thermoacoustic oscillations. Annu. Rev. Fluid Mech. 50, 661689.CrossRefGoogle Scholar
Kabiraj, L., Saurabh, A., Wahi, P. & Sujith, R. I. 2012a Route to chaos for combustion instability in ducted laminar premixed flames. Chaos 22 (2), 023129.CrossRefGoogle Scholar
Kabiraj, L., Sujith, R. I. & Wahi, P. 2012b Bifurcations of self-excited ducted laminar premixed flames. Trans. ASME J. Engng Gas Turbines Power 134 (3), 031502.CrossRefGoogle Scholar
Kashinath, K., Li, L. K. B. & Juniper, M. P. 2018 Forced synchronization of periodic and aperiodic thermoacoustic oscillations: lock-in, bifurcations and open-loop control. J. Fluid Mech. 838, 690714.CrossRefGoogle Scholar
Keen, B. E. & Fletcher, W. H. W. 1970 Suppression of a plasma instability by the method of ‘asynchronous quenching’. Phys. Rev. Lett. 24 (4), 130134.CrossRefGoogle Scholar
Kinsler, L. E., Frey, A. R., Coppens, A. B. & Sanders, J. V.(Eds) 1999 Fundamentals of Acoustics, 4th edn., p. 560. Wiley-VCH.Google Scholar
Kuznetsov, Y. A. 2013 Elements of Applied Bifurcation Theory, vol. 112. Springer Science & Business Media.Google Scholar
Lachaux, J.-P., Rodriguez, E., Martinerie, J. & Varela, F. J. 1999 Measuring phase synchrony in brain signals. Human Brain Mapping 8 (4), 194208.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Lang, W., Poinsot, T. & Candel, S. 1987 Active control of combustion instability. Combust. Flame 70 (3), 281289.CrossRefGoogle Scholar
Li, L. K. B. & Juniper, M. P. 2013a Lock-in and quasiperiodicity in a forced hydrodynamically self-excited jet. J. Fluid Mech. 726, 624655.CrossRefGoogle Scholar
Li, L. K. B. & Juniper, M. P. 2013b Lock-in and quasiperiodicity in hydrodynamically self-excited flames: experiments and modelling. Proc. Combust. Inst. 34 (1), 947954.CrossRefGoogle Scholar
Li, L. K. B. & Juniper, M. P. 2013c Phase trapping and slipping in a forced hydrodynamically self-excited jet. J. Fluid Mech. 735, R5.CrossRefGoogle Scholar
Lieuwen, T. C. & Neumeier, Y. 2002 Nonlinear pressure-heat release transfer function measurements in a premixed combustor. Proc. Combust. Inst. 29 (1), 99105.CrossRefGoogle Scholar
Lieuwen, T. C. & Yang, V. 2005 Combustion Instabilities in Gas Turbine Engines (Operational Experience, Fundamental Mechanisms and Modeling). American Institute of Aeronautics and Astronautics.Google Scholar
Lubarsky, E., Shcherbik, D. & Zinn, B. T.2003 Active control of instabilities in high-pressure combustor by non-coherent oscillatory fuel injection. AIAA Paper 2003-4519.CrossRefGoogle Scholar
Matsui, Y. 1981 An experimental study on pyro-acoustic amplification of premixed laminar flames. Combust. Flame 43, 199209.CrossRefGoogle Scholar
Mondal, S., Pawar, S. A. & Sujith, R. I. 2017 Synchronous behaviour of two interacting oscillatory systems undergoing quasiperiodic route to chaos. Chaos 27 (10), 103119.CrossRefGoogle Scholar
Mondal, S., Pawar, S. A. & Sujith, R. I. 2019 Forced synchronization and asynchronous quenching of periodic oscillations in a thermoacoustic system. J. Fluid Mech. 864, 7396.CrossRefGoogle Scholar
Nair, V.2014 Role of intermittency in the onset of combustion instability. PhD thesis, IIT Madras.Google Scholar
Nayfeh, A. H. & Balachandran, B. 2008 Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. John Wiley & Sons.Google Scholar
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2007 Passive control of combustion instabilities involving premixed flames anchored on perforated plates. Proc. Combust. Inst. 31 (1), 12831290.CrossRefGoogle Scholar
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2008 A unified framework for nonlinear combustion instability analysis based on the flame describing function. J. Fluid Mech. 615, 139167.CrossRefGoogle Scholar
Oefelein, J. C. & Yang, V. 1993 Comprehensive review of liquid-propellant combustion instabilities in F-1 engines. J. Propul. Power 9 (5), 657677.CrossRefGoogle Scholar
Ohe, K. & Takeda, S. 1974 Asynchronous quenching and resonance excitation of ionization waves in positive columns. Beiträge aus der Plasmaphysik 14 (2), 5565.CrossRefGoogle Scholar
Orchini, A. & Juniper, M. P. 2016 Flame double input describing function analysis. Combust. Flame 171, 87102.CrossRefGoogle Scholar
Pawar, S. A., Sujith, R. I., Emerson, B. & Lieuwen, T. C. 2018 Characterization of forced response of density stratified reacting wake. Chaos 28 (2), 023108.CrossRefGoogle ScholarPubMed
Pikovsky, A. & Maistrenko, Y. L. 2012 Synchronization: Theory and Application. Springer Science & Business Media.Google Scholar
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion. RT Edwards, Inc.Google Scholar
Rayleigh, J. W. S. 1878 The explanation of certain acoustical phenomena. Nature 18 (455), 319321.CrossRefGoogle Scholar
Richards, G. A., Straub, D. L. & Robey, E. H. 2003 Passive control of combustion dynamics in stationary gas turbines. J. Propul. Power 19 (5), 795810.CrossRefGoogle Scholar
Shcherbik, D., Lubarsky, E., Neumeier, Y., Zinn, B. T., McManus, K., Fric, T. F. & Srinivasan, S. 2003 Suppression of instabilities in gaseous fuel high-pressure combustor using non-coherent oscillatory fuel injection. In ASME Paper No. GT2003-38103.Google Scholar
Sujith, R. I., Waldherr, G. A. & Zinn, B. T. 1995 An exact solution for one-dimensional acoustic fields in ducts with an axial temperature gradient. J. Sound Vib. 184 (3), 389402.CrossRefGoogle Scholar
Takens, F. 1981 Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980, pp. 366381. Springer.CrossRefGoogle Scholar
Zhao, D., Lu, Z., Zhao, H., Li, X. Y., Wang, B. & Liu, P. 2018 A review of active control approaches in stabilizing combustion systems in aerospace industry. Prog. Aerosp. Sci 97 (2), 128.CrossRefGoogle Scholar
Zhao, D. & Morgans, A. S. 2009 Tuned passive control of combustion instabilities using multiple Helmholtz resonators. J. Sound Vib. 320 (4), 744757.CrossRefGoogle Scholar