No CrossRef data available.
Published online by Cambridge University Press: 21 April 2006
The preferred mode of instability was investigated in an axisymmetric air jet of moderate Reynolds number. Natural instabilities are shown to scale with local shear-layer thickness and the preferred mode is shown to be a shear-layer instability. The spatial evolution of the preferred mode was examined by exciting the flow acoustically and then mapping the phase-locked velocity fluctuations. Throughout the potential core region the phase-locked profiles are shown to agree with the eigensolutions of the Orr—Sommerfeld stability equations provided the calculations are based on measured, mean velocity profiles. The excitation intensity was varied from low levels, where the flow was merely tagged, to high levels where the mean flow was substantially distorted, and over that range of excitation there was no apparent deterioration in the agreement with stability predictions.