Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T13:25:33.049Z Has data issue: false hasContentIssue false

On the structure of vortex rings from inclined nozzles

Published online by Cambridge University Press:  26 September 2011

Trung Bao Le
Affiliation:
Saint Anthony Falls Laboratory, Department of Civil Engineering, University of Minnesota, Minneapolis, MN 55414, USA
Iman Borazjani
Affiliation:
Saint Anthony Falls Laboratory, Department of Civil Engineering, University of Minnesota, Minneapolis, MN 55414, USA
Seokkoo Kang
Affiliation:
Saint Anthony Falls Laboratory, Department of Civil Engineering, University of Minnesota, Minneapolis, MN 55414, USA
Fotis Sotiropoulos*
Affiliation:
Saint Anthony Falls Laboratory, Department of Civil Engineering, University of Minnesota, Minneapolis, MN 55414, USA
*
Email address for correspondence: fotis@umn.edu

Abstract

We carry out numerical simulations to investigate the vortex dynamics of laminar, impulsively driven flows through inclined nozzles in a piston–cylinder apparatus. Our simulations are motivated by the need to provide a complete description of the intricate vortical structures and governing mechanisms emerging in such flows as documented in the experiments of Webster & Longmire (Phys. Fluids, vol. 10, 1998, pp. 400–416) and Troolin & Longmire (Exp. Fluids, vol. 48, 2010, pp. 409–420). We show that the flow is dominated by the interaction of two main vortical structures: the primary inclined vortex ring at the nozzle exit and the secondary stopping ring that arises due to the entrainment of the flow into the cylinder when the piston stops moving. These two structures are connected together with pairs of vortex tubes, which evolve from the continuous vortex sheet initially connecting the primary vortex ring with the interior cylinder wall. In the exterior of the nozzle the key mechanism responsible for the breakup of the vortical structure is the interaction of the stronger inclined primary ring with the weaker stopping ring near the longest lip of the nozzle. In the interior of the nozzle the dynamics is governed by the axial stretching of the secondary ring and the ultimate impingement of this ring on the cylinder wall. Our simulations also clarify the kinematics of the azimuthal flow along the core of the primary vortex ring documented in the experiments by Lim (Phys. Fluids, vol. 10, 1998, pp. 1666–1671). We show that the azimuthal flow is characterized by a pair of two spiral saddle foci at the long and short lips of the nozzle through which ambient flow enters and exits the primary vortex core.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Allen, J. J. & Auvity, B. 2002 Interaction of a vortex ring with a piston vortex. J. Fluid Mech. 465, 353378.Google Scholar
2. Allen, J. J. & Chong, M. S. 2000 Vortex formation in front of a piston moving through a cylinder. J. Fluid Mech. 416 (1), 128.CrossRefGoogle Scholar
3. Aref, H. & Zawadzki, I. 1991 Linking of vortex rings. Nature 354, 5053.CrossRefGoogle Scholar
4. Borazjani, I., Ge, L. & Sotiropoulos, F. 2008 Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3d rigid bodies. J. Comput. Phys. 227 (16), 7587.CrossRefGoogle ScholarPubMed
5. Borazjani, I., Ge, L. & Sotiropoulos, F. 2010 High-resolution fluid–structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Ann. Biomed. Engng 38, 326344.CrossRefGoogle Scholar
6. Borazjani, I. & Sotiropoulos, F. 2009 Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity–wake interference region. J. Fluid Mech. 621 (1), 321364.Google Scholar
7. Colin, S. P., Costello, J. H., Hansson, L. J., Titelman, J. & Dabiri, J. O. 2010 Stealth predation and the predatory success of the invasive ctenophore Mnemiopsis leidyi . Proc. Natl Acad. Sci. 107 (40), 1722317227.Google Scholar
8. Dabiri, J. O. 2009 Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41 (1), 1733.CrossRefGoogle Scholar
9. Dabiri, J. O., Colin, S. P. & Costello, J. H. 2006 Fast-swimming hydromedusae exploit velar kinematics to form an optimal vortex wake. J. Exp. Biol. 209 (11), 20252033.CrossRefGoogle ScholarPubMed
10. Dhanak, M. R. & de Bernardinis, B. 1981 The evolution of an elliptic vortex ring. J. Fluid Mech. 109 (1), 189216.Google Scholar
11. Didden, N. 1979 On the formation of vortex rings: rolling-up and production of circulation. Z. Angew. Math. Phys. 30, 101116.CrossRefGoogle Scholar
12. Fabris, D. & Liepmann, D. 1997 Vortex ring structure at late stages of formation. Phys. Fluids 9 (9), 28012803.CrossRefGoogle Scholar
13. Fernandez, V. M., Zabusky, N. J. & Gryanik, V. M. 1995 Vortex intensification and collapse of the Lissajous-elliptic ring: single- and multi-filament Biot–Savart simulations and visiometrics. J. Fluid Mech. 299, 289331.Google Scholar
14. Ge, L. & Sotiropoulos, F. 2007 A numerical method for solving the 3d unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 225 (2), 1782.CrossRefGoogle ScholarPubMed
15. Gharib, M., Rambod, E., Kheradvar, A., Sahn, D. J. & Dabiri, J. O. 2006 Optimal vortex formation as an index of cardiac health. Proc. Natl Acad. Sci. 103 (16), 63056308.CrossRefGoogle ScholarPubMed
16. Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360 (1), 121140.CrossRefGoogle Scholar
17. Gilmanov, A. & Sotiropoulos, F. 2005 A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies. J. Comput. Phys. 207 (2), 457.CrossRefGoogle Scholar
18. Glezer, A. 1988 The formation of vortex rings. Phys. Fluids 31 (12), 35323542.Google Scholar
19. Grinstein, F. F. 2001 Vortex dynamics and entrainment in rectangular free jets. J. Fluid Mech. 437, 69101.CrossRefGoogle Scholar
20. Gutmark, E. J. 1999 Flow control with noncircular jets 1. Annu. Rev. Fluid Mech. 31, 239272.Google Scholar
21. Ho, C. & Gutmark, E. 1987 Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet. J. Fluid Mech. 179 (1), 383405.CrossRefGoogle Scholar
22. Husain, H. S. & Hussain, F. 1991 Elliptic jets. Part 2. Dynamics of coherent structures: pairing. J. Fluid Mech. 233 (1), 439482.Google Scholar
23. Husain, H. S. & Hussain, F. 1993 Elliptic jets. Part 3. Dynamics of preferred mode coherent structure. J. Fluid Mech. 248 (1), 315361.CrossRefGoogle Scholar
24. James, S. & Madnia, C. K. 1996 Direct numerical simulation of a laminar vortex ring. Phys. Fluids 8 (9), 24002414.Google Scholar
25. Kida, S., Takaoka, M. & Hussain, F. 1991 Collision of two vortex rings. J. Fluid Mech. 230, 583646.CrossRefGoogle Scholar
26. Knowles, K. & Saddington, A. J. 2006 A review of jet mixing enhancement for aircraft propulsion applications. Proc. Inst. Mech. Engrs G, J. Aerosp. Engng 220 (2), 103127.Google Scholar
27. Krueger, P. S. 2005 An over-pressure correction to the slug model for vortex ring circulation. J. Fluid Mech. 545, 427443.CrossRefGoogle Scholar
28. Krueger, P. S. 2008 Circulation and trajectories of vortex rings formed from tube and orifice openings. Physica D: Nonlinear Phenom. 237 (14–17), 22182222.Google Scholar
29. Krueger, P. S. & Gharib, M. 2003 The significance of vortex ring formation to the impulse and thrust of a starting jet. Phys. Fluids 15 (5), 12711281.CrossRefGoogle Scholar
30. Le, T. B., Borazjani, I. & Sotiropoulos, F. 2010 Pulsatile flow effects on the hemodynamics of intracranial aneurysms. J. Biomech. Engng 132 (11), 111009.CrossRefGoogle ScholarPubMed
31. Liepmann, D. & Gharib, M. 1992 The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech. 245 (1), 643668.Google Scholar
32. Lim, T. T. 1989 An experimental study of a vortex ring interacting with an inclined wall. Exp. Fluids 7, 453463.CrossRefGoogle Scholar
33. Lim, T. T. 1997 A note on the leapfrogging between two coaxial vortex rings at low Reynolds numbers. Phys. Fluids 9 (1), 239241.CrossRefGoogle Scholar
34. Lim, T. T. 1998 On the breakdown of vortex rings from inclined nozzles. Phys. Fluids 10 (7), 16661671.Google Scholar
35. Lim, T. T. & Nickels, T. B. 1992 Instability and reconnection in the head-on collision of two vortex rings. Nature 357, 225227.Google Scholar
36. Longmire, E. K. & Duong, L. H. 1996 Bifurcating jets generated with stepped and sawtooth nozzles. Phys. Fluids 8 (4), 978992.CrossRefGoogle Scholar
37. Longmire, E. K., Eaton, J. K. & Elkins, C. J. 1992 Control of jet structure by crown-shaped nozzles. AIAA J. 30 (2), 505512.CrossRefGoogle Scholar
38. Marshall, J. S. & Grant, J. R. 1994 Evolution and breakup of vortex rings in straining and shearing flows. J. Fluid Mech. 273, 285312.Google Scholar
39. Maxworthy, T. 1972 The structure and stability of vortex rings. J. Fluid Mech. 51 (1), 1532.Google Scholar
40. Melander, M. V. & Hussain, F. 1993 Polarized vorticity dynamics on a vortex column. Phys. Fluids A: Fluid Dyn. 5 (8), 19922003.CrossRefGoogle Scholar
41. Miller, R. S., Madnia, C. K. & Givi, P. 1995 Numerical simulation of non-circular jets. Comput. Fluids 24 (1), 125.Google Scholar
42. Moffatt, H. K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35 (1), 117129.CrossRefGoogle Scholar
43. New, T. 2009 An experimental study on jets issuing from elliptic inclined nozzles. Exp. Fluids 46, 11391157.CrossRefGoogle Scholar
44. New, T. H., Lim, K. M. K. & Tsai, H. M. 2005 Vortical structures in a laminar V-notched indeterminate-origin jet. Phys. Fluids 17 (5), 054108.CrossRefGoogle Scholar
45. New, T. H. & Tsai, H. M. 2007 Experimental investigations on indeterminate-origin V- and A-notched jets. AIAA J. 45, 828839.CrossRefGoogle Scholar
46. New, T. H. & Tsovolos, D. 2010 Cross-stream behaviour and flow characteristics of hybrid inclined nozzle jets. J. Turbul. 11, doi:10.1080/14685248.2010.484023.Google Scholar
47. Nitsche, M. & Krasny, R. 1994 A numerical study of vortex ring formation at the edge of a circular tube. J. Fluid Mech. 276 (1), 139161.Google Scholar
48. Orlandi, P. & Verzicco, R. 1993 Vortex rings impinging on walls: axisymmetric and three-dimensional simulations. J. Fluid Mech. 256 (1), 615646.CrossRefGoogle Scholar
49. Poussou, S. & Plesniak, M. W. 2007 Near field flow measurements of a cavitating jet emanating from a crown shaped nozzle. Trans. ASME: J. Fluids Engng 129 (5), 605612.Google Scholar
50. Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
51. Sau, R. & Mahesh, K. 2008 Dynamics and mixing of vortex rings in crossflow. J. Fluid Mech. 604 (1), 389409.CrossRefGoogle Scholar
52. Shelley, M. J., Meiron, D. I. & Orszag, S. A. 1993 Dynamical aspects of vortex reconnection of perturbed anti-parallel vortex tubes. J. Fluid Mech. 246 (1), 613652.Google Scholar
53. Shu, F., Plesniak, M. W. & Sojka, P. E. 2005 Indeterminate-origin nozzles to control jet structure and evolution. J. Turbul. 6 (26), 118.CrossRefGoogle Scholar
54. Sil’nikov, 1965 A case of the existence of a denumerable set of periodic motions. Sov. Math. Dokl. 6, 163166.Google Scholar
55. Silver, D. 2006 Knot theory odd’s origin. Am. Sci. 94, 158165.Google Scholar
56. Sotiropoulos, F., Ventikos, Y. & Lackey, T. C. 2001 Chaotic advection in three-dimensional stationary vortex-breakdown bubbles: Sil’nikov’s chaos and the devil’s staircase. J. Fluid Mech. 444, 257297.Google Scholar
57. Toyoda, K. & Hiramoto, R. 2009 Manipulation of vortex rings for flow control. Fluid Dyn. Res. 41 (5), 051402.CrossRefGoogle Scholar
58. Troolin, D. R. & Longmire, E. K. 2010 Volumetric velocity measurements of vortex rings from inclined exits. Exp. Fluids 48, 409420.CrossRefGoogle Scholar
59. Walker, J. D. A., Smith, C. R., Cerra, A. W. & Doligalski, T. L. 1987 The impact of a vortex ring on a wall. J. Fluid Mech. 181 (1), 99140.CrossRefGoogle Scholar
60. Webster, D. R. & Longmire, E. K. 1997 Vortex dynamics in jets from inclined nozzles. Phys. Fluids 9 (3), 655666.CrossRefGoogle Scholar
61. Webster, D. R. & Longmire, E. K. 1998 Vortex rings from cylinders with inclined exits. Phys. Fluids 10 (2), 400416.Google Scholar
62. Widnall, S. E., Bliss, D. B. & Tsai, C. Y. 1974 The instability of short waves on a vortex ring. J. Fluid Mech. 66 (1), 3547.Google Scholar
63. Widnall, S. E. & Sullivan, J. P. 1973 On the stability of vortex rings. Proc. R. Soc. Lond. A 332 (1590), 335353.Google Scholar
64. Wlezien, R. W. & Kibens, V. 1986 Passive control of jets with indeterminate origins. AIAA J. 24, 1263.Google Scholar
65. Yule, A. J. 1978 Large-scale structure in the mixing layer of a round jet. J. Fluid Mech. 89 (3), 413432.CrossRefGoogle Scholar
66. Zabusky, N. J. & Melander, M. V. 1989 Three-dimensional vortex tube reconnection: morphology for orthogonally-offset tubes. Physica D: Nonlinear Phenom. 37 (1–3), 555562.Google Scholar