Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T14:05:12.192Z Has data issue: false hasContentIssue false

On the thermodynamic stability of steady-state adiabatic systems

Published online by Cambridge University Press:  21 April 2006

L. F. Henderson
Affiliation:
Department of Mechanical Engineering, University of Sydney, Sydney NSW 2006, Australia

Abstract

This paper begins by reviewing Bethe's (1942) work on the subject. He considered the propagation of a normal shock wave in a medium with an arbitrary equation of state. Difficulties arise if one attempts to extend his theory to systems containing plane oblique shocks or the reflection or refraction of such shocks. The object of the present paper is to resolve these difficulties. General conditions for the local thermodynamic equilibrium and thermodynamie stability, of a non-equilibrium system in steady-state, adiabatic, flow are summarized by the principle of maximum entropy production, which gives \[ \Delta s\geqslant 0;\quad {\rm d}(\Delta s)= 0;\quad {\rm d}^2(\Delta s) < 0, \] for ht, constant, where s is the specific entropy and ht is the specific total enthalpy; it is deduced from the second law. Conversely the consequences of Δs < 0, d(Δs) ≠ 0, d2s) = 0, are discussed and may lead to either an impossibility or to some form of instability such as unsteadiness, or a change in the structure of the system (a catastrophe).

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abd-el-Fattah, A. M., Henderson, L. F. & Lozzi, A. 1976 J. Fluid Mech. 76, 157176.
Abd-el-Fattah, A. M. & Henderson, L. F. 1978a J. Fluid Mech. 86, 1532.
Abd-el-Fattah, A. M. & Henderson, L. F. 1978b J. Fluid Mech. 89, 7995.
Ames Research Staff 1953 Equations, tables and charts for compressible flow. Natn. Adv. Comm for Aero. Rep. 1135. Washington, D.C.
Bethe, H. A. 1942 The theory of shock waves for an arbitrary equation of state. OSRD Rep. 545.
Borisov, A. A., Borisov, Al. A., Kutateladze, S. S. & Nakoryoakov, V. E. 1983 J. Fluid Mech. 126, 5973.
Callen, H. B. 1985 Thermodynamics. J. Wiley.
Courant, R. & Friedrichs, K. O. 1958 Supersonic Flow and Shock Waves. Interscience.
D'yakov, S. P. 1956 Zh. Eksp. Tech. Fiz. 27, 288.
Erpenbeck, J. J. 1962 Phys. Fluids. 5, 11811187.
Fowles, G. R. 1976 Phys. Fluids 19, 227238.
Fowles, G. R. 1981 Phys. Fluids 24, 220227.
Fowles, G. R. & Houwing, A. F. P. 1984 Phys. Fluids 27, 19821990.
Glansdorff, P. & Prigogine, I. 1971 Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley-Interscience.
Griffith, R. W., Sandeman, R. J. & Houwing, A. F. P. 1975 J. Phys. D: Appl. Phys. 8, 16811691.
Guderley, K. G. 1962 The Theory of Transonic Flow. Pergamon.
Guggenheim, E. A. 1959 Thermodynamics. North-Holland.
Henderson, L. F. & Lozzi, A. 1975 J. Fluid Mech. 68, 139155.
Henderson, L. F. & Lozzi, A. 1979 J. Fluid Mech. 94, 541559.
Hornung, H. G. & Robinson, M. L. 1982 J. Fluid Mech. 123, 155164.
Houwing, A. F. P., Fowles, G. R. & Sandemann, R. J. 1983 Proc. of 14th Intl Symp. on Shock Tubes and Waves. New South Wales University Press.
Jahn, R. G. 1956 J. Fluid Mech. 1, 457489.
Kontorovich, V. M. 1957 Zh. Eksp. Teop. Fiz. 33, 1525.
Landau, L. D. & Lifshitz, E. M. 1958 Statistical Physics. Pergamon.
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.
Mölder, S. 1971 CASI Trans. 4, 73.
Morduchow, M. & Paulley, A. J. 1971 Phys. Fluids 14, 323331.
von Neumann, J. 1943 Oblique Reflexion of Shock Waves John von Neumann, Collected Works VI. p. 238. Pergamon.
Pantazapol, D., Bellet, J. C. & Soustre, J. 1972 C. R. Acad. Sci. Paris 275, A225.
Rosenhead, L. 1963 Laminar Boundary Layers. Clarendon.
Salas, M. D. & Morgan, B. D. 1983 AIAA J. 21, 16111617.
Swan, G. W. & Fowles, G. R. 1975 Phys. Fluids 18, 2835.
Zel'dovich, Ya. B. & Raizer, Yu. P. 1966 Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, vol. 1. Academic.