Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T01:35:34.308Z Has data issue: false hasContentIssue false

On the time scales and structure of Lagrangian intermittency in homogeneous isotropic turbulence

Published online by Cambridge University Press:  25 March 2019

R. Watteaux*
Affiliation:
Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
G. Sardina
Affiliation:
Department of Mechanics and Maritime Sciences, Fluid Dynamics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
L. Brandt
Affiliation:
KTH Mechanics, SE-100 44 Stockholm, Sweden
D. Iudicone
Affiliation:
Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
*
Email address for correspondence: romainwatteaux@gmail.com

Abstract

We present a study of Lagrangian intermittency and its characteristic time scales. Using the concepts of flying and diving residence times above and below a given threshold in the magnitude of turbulence quantities, we infer the time spectra of the Lagrangian temporal fluctuations of dissipation, acceleration and enstrophy by means of a direct numerical simulation in homogeneous and isotropic turbulence. We then relate these time scales, first, to the presence of extreme events in turbulence and, second, to the local flow characteristics. Analyses confirm the existence in turbulent quantities of holes mirroring bursts, both of which are at the core of what constitutes Lagrangian intermittency. It is shown that holes are associated with quiescent laminar regions of the flow. Moreover, Lagrangian holes occur over few Kolmogorov time scales while Lagrangian bursts happen over longer periods scaling with the global decorrelation time scale, hence showing that loss of the history of the turbulence quantities along particle trajectories in turbulence is not continuous. Such a characteristic partially explains why current Lagrangian stochastic models fail at reproducing our results. More generally, the Lagrangian dataset of residence times shown here represents another manner for qualifying the accuracy of models. We also deliver a theoretical approximation of mean residence times, which highlights the importance of the correlation between turbulence quantities and their time derivatives in setting temporal statistics. Finally, whether in a hole or a burst, the straining structure along particle trajectories always evolves self-similarly (in a statistical sense) from shearless two-dimensional to shear bi-axial configurations. We speculate that this latter configuration represents the optimum manner to dissipate locally the available energy.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arad, I., Dhruva, B., Kurien, S., Lvov, V. S., Procaccia, I. & Sreenivasan, K. R. 1998 Extraction of anisotropic contributions in turbulent flows. Phys. Rev. Lett. 81 (24), 5330.Google Scholar
Arneodo, A. et al. 2008 Universal intermittent properties of particle trajectories in highly turbulent flows. Phys. Rev. Lett. 100, 254504.Google Scholar
Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30, 2343.Google Scholar
Babler, M. U., Biferale, L. & Lanotte, A. S. 2012 Breakup of small aggregates driven by turbulent hydrodynamical stress. Phys. Rev. E 85, 025301(R).Google Scholar
Babler, M. U., Morbidelli, M. & Baldiga, J. 2008 Modelling the breakup of solid aggregates in turbulent flows. J. Fluid Mech. 612, 261289.Google Scholar
Babler, M. U., Biferale, L., Brandt, L., Feudel, U., Guseva, K., Lanotte, A. S., Marchioli, C., Picano, F., Sardina, G., Soldati, A. et al. 2014 Numerical simulations of aggregate breakup in bounded and unbounded turbulent flows. J. Fluid Mech. 766, 104128.Google Scholar
Badrinarayanan, M. A., Rajagopalan, S. & Narasimha, R. 1977 Experiments on the fine structure of turbulence. J. Fluid Mech. 80, 237257.Google Scholar
Benzi, R., Biferale, L., Fisher, R., Lamb, D. Q. & Toschi, F. 2010 Inertial range Eulerian and Lagrangian statistics from numerical simulations of isotropic turbulence. J. Fluid Mech. 653, 221244.Google Scholar
Benzi, R., Paladin, G., Parisi, G. & Vulpiani, A. 1984 On the multifractal nature of fully developed turbulence and chaotic systems. J. Phys. A: Math. Gen. 17, 35213531.Google Scholar
Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. & Succi, S. 1993 Extended self-similarity in turbulent flows. Phys. Rev. E 48 (102).Google Scholar
Bhatnagar, A., Gupta, A., Mitra, D., Pandit, R. & Perlekar, P. 2016 How long do particles spend in vortical regions in turbulent flows? Phys. Rev. E 94, 053119.Google Scholar
Biferale, L., Bodenschatz, E., Cencini, M., Lanotte, A., Ouellette, N. T., Toschi, F. & Xu, H. 2008 Lagrangian structure functions in turbulence: a quantitative comparison between experiment and direct numerical simulation. Phys. Fluids 20, 065103.Google Scholar
Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., Lanotte, A. & Toschi, F. 2004 Multifractal statistics of Lagrangian velocity and acceleration in turbulence. Phys. Rev. Lett. 93 (6).Google Scholar
Biferale, L., Boffetta, G., Celani, A., Lanotte, A. & Toschi, F. 2005 Particle trapping in three-dimensional fully developed turbulence. Phys. Fluids 17.Google Scholar
Blackburn, H., Mansour, N. & Cantwell, B. J. 1996 Topology of fine-scale mo- tions in turbulent channel flow. J. Fluid Mech. 310, 269292.Google Scholar
Boffetta, G., De Lillo, F. & Musacchio, S. 2002 Lagrangian statistics and temporal intermittency in a shell model of turbulence. Phys. Rev. E 66, 066307.Google Scholar
Cantwell, B. J. 1993 On the behavior of velocity gradient tensor invariants in direct numerical simulations of turbulence. Phys. Fluids A 5 (8), 2008.Google Scholar
Carati, D., Ghosal, S. & Moin, P. 1995 On the representation of backscatter in dynamic localization models. Phys. Fluids 7, 606.Google Scholar
Cava, D. & Katul, G. G. 2009 The effects of thermal stratification on clustering properties of canopy turbulence. Boundary-Layer Meteorol. 130, 307325.Google Scholar
Cava, D., Katul, G. G., Molini, A. & Elefante, C. 2012 The role of surface characteristics on intermittency and zero-crossing properties of atmospheric turbulence. J. Geophys. Res. 117, D01104.Google Scholar
Chamecki, M. 2013 Persistence of velocity fluctuations in non-Gaussian turbulence within and above plant canopies. Phys. Fluids 25, 115110.Google Scholar
Chevillard, L. & Meneveau, C. 2006 Lagrangian dynamics and statistical geometric structure of turbulence. Phys. Rev. Lett. 97, 174501.Google Scholar
Chevillard, L., Meneveau, C., Biferale, L. & Toschi, F. 2008 Modeling the pressure Hessian and viscous Laplacian in turbulence: comparisons with direct numerical simulation and implications on velocity gradient dynamics. Phys. Fluids 20, 101504.Google Scholar
Chevillard, L., Castaing, B., Arneodo, A., Lévêque, E., Pinton, J.-F. & Roux, S. G. 2012 A phenomenological theory of Eulerian and Lagrangian velocity fluctuations in turbulent flows. C. R. Phys. 13, 899928.Google Scholar
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2 (5), 765777.Google Scholar
Chong, M. S., Soria, J., Perry, A. E., Chacin, J., Cantwell, B. J. & Na, Y. 1998 A study of the tubulence structures of wall-bounded shear flows using dns data. J. Fluid Mech. 357, 225248.Google Scholar
Cozar, A. 2014 Plastic debris in the open ocean. Proc. Natl Acad. Sci. USA 111 (28).Google Scholar
da Silva, C. B. & Pereira, J. C. 2008 Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20, 055101.Google Scholar
Donzis, A. D., Yeung, P. K. & Sreenivasan, K. R. 2008 Dissipation and enstrophy in isotropic turbulence: resolution effects and scaling in direct numerical simulations. Phys. Fluids 20, 045108.Google Scholar
Dubrulle, B. 1994 Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance. Phys. Rev. Lett. 73, 959962.Google Scholar
Elhmaidi, D., Provenzale, A. & Babiano, A. 1993 Elementary topology of two-dimensional turbulence from a Lagrangian viewpoint and single-particle dispersion. J. Fluid Mech. 257, 533558.Google Scholar
Frisch, U. 1983 Turbulence and predictability of geophysical flows and climate dynamics. In Proceedings of the International School of Physic Enrico Fermi, Varenna, 1983 (ed. Ghil, M., Benzi, R. & Parisi, G.), North-Holland.Google Scholar
Galloway, T. S., Cole, M. & Lewis, C. 2017 Interactions of microplastic debris throughout the marine ecosystem. Nature Ecology & Evolution 1, 0116.Google Scholar
Girimaji, S. S. & Pope, S. B. 1990 A diffusion model for velocity gradients in turbulence. Phys. Fluids A 2, 242.Google Scholar
Gledzer, E., Villermaux, E., Kahalerras, H. & Gagne, Y. 1996 On the log-Poisson statistics of the energy dissipation field and related problems of developed turbulence. Phys. Fluids 8 (12), 33673378.Google Scholar
Grabowski, W. W. & Wang, L.-P. 2013 Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech. 45, 293324.Google Scholar
van Hinsberg, M. A. T., ten Thije Boonkkamp, J. H. M., Toschi, F. & Clercx, H. J. H. 2013 Optimal interpolation schemes for particle tracking in turbulence. Phys. Rev. E 87, 043307.Google Scholar
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Chao Tung, C. & Liu, H. H. 1998 The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 1971.Google Scholar
Huang, Y., Biferale, L., Calzavarini, E., Sun, C. & Toschi, F. 2013 Lagrangian single particle turbulent statistics through the Hilbert–Huang transform. Phys. Rev. E 87, 041003.Google Scholar
Ishihara, T. & Kaneda, Y. 1993 Time micro scales of Lagrangian strain tensor in turbulence. J. Phys. Soc. Japan 62 (2), 506513.Google Scholar
Jimenez, A., Wray, A., Saffman, P. G. & Rogallo, R. S. 1993 The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 6590.Google Scholar
Johnson, P. & Meneveau, C. 2017 Turbulence intermittency in a multiple-time-scale Navier–Stokes-based reduced model. Phys. Rev. Fluids 2, 072601.Google Scholar
Johnson, P. & Meneveau, C. 2018 Redicting viscous-range velocity gradient dynamics in large-eddy simulations of turbulence. J. Fluid Mech. 837, 80114.Google Scholar
Kailasnath, P. & Sreenivasan, K. R. 1993 Zero crossings of velocity fluctuations in turbulent boundary layers. Phys. Fluids A 5 (11).Google Scholar
Kaneda, Y. 1993 Lagrangian and Eulerian time correlations in turbulence. Phys. Fluids A 5, 2835.Google Scholar
Kiorboe, T. 2008 A Mechanistic Approach to Plankton Ecology. Princeton University Press.Google Scholar
Kolmogorov, A. N. 1958 Dissipation of energy in a locally isotropic turbulence. Am. Math. Soc. Transl. 8 (2), 87.Google Scholar
Lamorgese, A. G., Pope, S. B., Yeung, P. K. & Sawford, B. L. 2007 A conditionally cubic-Gaussian stochastic Lagrangian model for acceleration in isotropic turbulence. J. Fluid Mech. 582, 423448.Google Scholar
Lazier, J. R. N. & Mann, K. H. 1989 Turbulence and the diffusive layers around small organisms. Sea Res. A 11 (36), 17211733.Google Scholar
Liberzon, A., Lüthi, B., Holzner, M., Ott, S., Berg, J. & Mann, J. 2012 On the structure of acceleration in turbulence. Physica D 241, 208215.Google Scholar
Liepmann, H. W. 1949 Die Anwendung- eines Satzes über die Nullstellen Stochastischer Funktionen auf Turbulenzmessungen. Helv. Phys. Acta 22.Google Scholar
Lund, T. S. & Rogers, M. 1994 An improved measure of strain state probability in turbulent flows. Phys. Fluids 6 (5), 1838.Google Scholar
Manikandan, M., Haller, G., Peacok, T., Rupper-Felsot, J. E. & Swinney, H. L. 2007 Uncovering the Lagrangian skeleton of turbulence. Phys. Rev. Lett. 98, 144502.Google Scholar
Martin, J., Ooi, A., Chong, M. S. & Soria, J. 1998 Dynamics of the velocity gradient tensor invariants in isotropic turbulence. Phys. Fluids 10 (2336).Google Scholar
Meneveau, C. 1996 Transition between viscous and inertial-range scaling of turbulence structure functions. Phys. Rev. E 54 (4).Google Scholar
Meneveau, C. 2011 Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech. 43, 219245.Google Scholar
Meneveau, C. & Sreenivasan, K. R. 1987 Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett. 59 (13).Google Scholar
Mordant, N., Delour, J., Leveque, E., Arneodo, A. & Pinton, J.-F. 2002 Long time correlations in Lagrangian dynamics: a key to intermittency in turbulence. Phys. Rev. Lett. 89 (25).Google Scholar
Mouri, H. 2015 Log-stable law of energy dissipation as a framework of turbulence intermittency. Phys. Rev. E 91, 033017.Google Scholar
Narahari Rao, K., Narasimha, R. & Badrinarayanan, M. A. 1971 The ‘bursting’ phenomenon in a turbulent boundary layer. J. Fluid Mech. 48, 339352.Google Scholar
Ooi, A., Martin, J., Soria, J. & Chong, M. S. 1999 A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence. J. Fluid Mech. 381, 141174.Google Scholar
Ouellette, N. T., Xu, H., Bourgoin, M. & Bodenschatz, E. 2006 Small-scale anisotropy in Lagrangian turbulence. New J. Phys. 8, 102.Google Scholar
Pecseli, H. L., Trulsen, J. K. & Fiksen, O. 2012 Predator–prey encounter and capture rates in turbulent environments. Prog. Oceanogr. 101, 1432.Google Scholar
Pereira, R. M., Moriconi, L. & Chevillard, L. 2018 A multifractal model for the velocity gradient dynamics in turbulent flows. J. Fluid Mech. 839, 430467.Google Scholar
Perry, A. E. & Chong, M. S. 1994 Topology of flow patterns in vortex motions and turbulence. Appl. Sci. Res. 53, 357374.Google Scholar
Pope, S. B. 1990 Lagrangian microscales in turbulence. Phil. Trans. R. Soc. Lond. A 333 (1631), 309319.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Pope, S. B. 2002 A stochastic Lagrangian model for acceleration in turbulent flows. Phys. Fluids 14 (7), 2360.Google Scholar
Pope, S. B. & Chen, Y. L. 1990 The velocity-dissipation probability density function model for turbulent flows. Phys. Fluids A 2 (8), 1437.Google Scholar
Rice, S. O. 1945 Mathematical analysis of random noise. Bell Syst. Techno. J. 241.Google Scholar
Sardina, G., Picano, F., Brandt, L. & Caballero, R. 2015 Continuous growth of droplet size variance due to condensation in turbulent clouds. Phys. Rev. Lett. 115, 184501.Google Scholar
Sawford, B. L. 1991 Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys. Fluids A 3, 15771586.Google Scholar
Sawford, B. L. 2001 Turbulent Relative Dispersion. Annu. Rev. Fluid Mech. 33, 289317.Google Scholar
Sawford, B. L. & Yeung, P. K. 2011 Kolmogorov similarity scaling for one-particle Lagrangian statistics. Phys. Fluids 23, 091704.Google Scholar
She, Z. S. & Leveque, E. 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336339.Google Scholar
She, Z. S. & Waymire, E. 1995 Quantized energy cascades and log-Poisson statistics in fully developed turbulence. Phys. Rev. Lett. 74, 262265.Google Scholar
Sirovich, L., Smith, L. & Yakhot, V. 1994 Energy spectrum of homogeneous and isotropic turbulence in far dissipation range. Phys. Rev. Lett. 72 (3), 344347.Google Scholar
Soria, J., Sondergaard, R., Cantwell, B. J., Chong, M. S. & Perry, A. E. 1994 A study of the fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids 6 (2), 871884.Google Scholar
Squires, K. D. & Eaton, J. K. 1991 Lagrangian and Eulerian statistics obtained from direct numerical simulations of homogeneous turbulence. Phys. Fluids A 3, 130.Google Scholar
Sreenivasan, K. R. 1985 On the fine-scale intermittency of turbulence. J. Fluid Mech. 151, 81103.Google Scholar
Sreenivasan, K. R., Prabhu, A. & Narasimha, R. 1983 Zero-crossings in turbulent signals. J. Fluid Mech. 137, 251272.Google Scholar
Sreenivasan, K. R. & Stolovitzky, G. 1995 Turbulent cascades. J. Stat. Phys. 78 (1/2).Google Scholar
Sreenivasan, R. & Bershadskii, A. 2006 Clustering properties in turbulent signals. J. Stat. Phys. 125 (5/6).Google Scholar
Tennekes, H. 1975 Eulerian and Lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67, 561567.Google Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.Google Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.Google Scholar
Wang, B., Bergstrom, D., Yin, J. & Yee, E. 2006 Turbulence topologies predicted using large eddy simulations. J. Turbul. 7 (34).Google Scholar
Wang, L. 2014 Analysis of the Lagrangian path structures in fluid turbulence. Phys. Fluids 26, 045104.Google Scholar
Watteaux, R., Stocker, R. & Taylor, J. R. 2015 Sensitivity of the rate of nutrient uptake by chemotactic bacteria to physical and biological parameters in a turbulent environment. J. Theor. Biol. 387, 120135.Google Scholar
Wilczek, M., Xu, H., Ouellette, N. T., Friedrich, R., Bodenschatz, E. et al. 2013 Generation of Lagrangian intermittency in turbulence by a self-similar mechanism. New J. Phys. 15.Google Scholar
Yakhot, V. & Sreenivasan, K. R. 2005 Anomalous scaling of structure functions and dynamic constraints on turbulence simulations. J. Stat. Phys. 121, 823841.Google Scholar
Yeung, P. K. 2001 Lagrangian characteristics of turbulence and scalar transport in direct numerical simulations. J. Fluid Mech. 427, 241274.Google Scholar
Yeung, P. K. 2002 Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. (34), 115142.Google Scholar
Yeung, P. K. & Pope, S. B. 1989 Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531586.Google Scholar
Yeung, P. K., Pope, S. B., Lamorgese, A. G. & Donzis, A. D. 2006a Acceleration and dissipation statistics of numerically simulated isotropic turbulence. Phys. Fluids 18, 065103.Google Scholar
Yeung, P. K., Pope, S. B. & Sawford, B. L. 2006b Reynolds number dependence of Lagrangian statistics in large numerical simulations of isotropic turbulence. J. Turbul. 7, 112.Google Scholar
Ylvisaker, N. D. 1965 The expected number of zeros of a stationary Gaussian process. Ann. Math. Statist. 36 (3), 10431046.Google Scholar
Yu, H. & Meneveau, C. 2010 Lagrangian refined Kolmogorov similarity hypothesis for gradient time evolution and correlation in turbulent flows. Phys. Rev. Lett. 104, 084502.Google Scholar
Zybin, K., Sirota, V. A., Ilyin, A. S. & Gurevich, A. V. 2008 Lagrangian statistical theory of fully developed hydrodynamical turbulence. Phys. Rev. Lett. 100, 174504.Google Scholar