Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T19:52:05.121Z Has data issue: false hasContentIssue false

One-dimensional shock turbulence in a compressible fluid

Published online by Cambridge University Press:  29 March 2006

Tomomasa Tatsumi
Affiliation:
Department of Physics, Faculty of Science, University of Kyoto, Japan
Hiroshi Tokunaga
Affiliation:
Department of Mechanical Engineering, Faculty of Industrial Arts, Kyoto Technical University, Japan

Abstract

The interactions of weak nonlinear disturbances in a compressible fluid including shocks, expansion waves and contact surfaces are investigated by making use of the reductive perturbation method. It is found that the nonlinear waves belonging to different families of characteristics behave almost independently of each other, while those belonging to the same family are governed by either the Burgers equation or the equation of heat conduction. Thus the statistical properties of one-dimensional shock turbulence in a compressible fluid are reduced to those of the solutions of the Burgers equation. In particular, the law of energy decay of shock turbulence is shown to be identical to that of Burgers turbulence.

Type
Research Article
Copyright
© 1974 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burgers, J. M. 1950 Proc. Roy. Acad. Sci. Amst. 53, 247, 393.
Burgers, J. M. 1954a Proc. Roy. Acad. Sci. Amst. B, 57, 45.
Burgers, J. M. 1954b Proc. Roy. Acad. Sci. Amst. B, 57, 159.
Burgers, J. M. 1954c Proc. Roy. Acad. Sci. Amst. B, 57, 403.
Burgers, J. M. 1955a Proc. Roy. Acad. Sci. Amst. B, 58, 1.
Burgers, J. M. 1955b Gas Dynamics of Cosmic Clouds (ed. H. C. Van de Hulst & J. M. Burgers), p. 228. North-Holland.
Burgers, J. M. 1972 Statistical Models and Turbulence (ed. M. Rosenblatt & C. Van Atta), p. 41. Springer.
Burgers, J. M. 1973 Inst. Fluid Dyn. Appl. Math. University of Maryland, Lecture Series, no. 52.
Case, K. M. & Chiu, S. C. 1969 Phys. Fluids, 12, 1799.
Cole, J. D. 1951 Quart. Appl. Math. 9, 225.
Courant, R. & Friedrichs, K. O. 1948 Supersonic Flow and Shock Waves. Interscience.
Crow, S. C. & Canavan, G. H. 1970 J. Fluid Mech. 41, 387.
Hopf, E. 1950 Comm. Pure Appl. Math. 3, 201.
Lee, J. 1971 J. Fluid Mech. 47, 321.
Lighthill, M. J. 1952 Proc. Roy. Soc. A, 211, 564.
Lighthill, M. J. 1954 Proc. Roy. Soc. A, 222, 1.
Lighthill, M. J. 1955 Gas Dynamics of Cosmic Clouds (ed. H. C. Van de Hulst & J. M. Burgers), p. 121. North-Holland.
Lighthill, M. J. 1956 Surveys in Mechanics (ed. G. K. Batchelor & R. M. Davies), p. 250. Cambridge University Press.
Moyal, J. E. 1952 Proc. Camb. Phil. Soc. 48, 329.
Murray, J. D. 1973 J. Fluid Mech. 59, 263.
Oikawa, M. & Yajima, N. 1973 J. Phys. Soc. Japan, 34, 1093.
Taniuti, T. & Wei, C. C. 1968 J. Phys. Soc. Japan, 24, 941.
Tatsumi, T. & Kida, S. 1972 J. Fluid Mech. 55, 659.
Taylor, G. I. 1910 Proc. Roy. Soc. A, 84, 371.