Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-29T05:43:40.822Z Has data issue: false hasContentIssue false

Particle paths in nonlinear Schrödinger models in the presence of linear shear currents

Published online by Cambridge University Press:  18 September 2018

C. W. Curtis*
Affiliation:
Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA
J. D. Carter
Affiliation:
Mathematics Department, Seattle University, Seattle, WA 98122, USA
H. Kalisch
Affiliation:
Department of Mathematics, University of Bergen, Bergen 5020, Norway
*
Email address for correspondence: ccurtis@mail.sdsu.edu

Abstract

We investigate the effect of constant-vorticity background shear on the properties of wavetrains in deep water. Using the methodology of Fokas (A Unified Approach to Boundary Value Problems, 2008, SIAM), we derive a higher-order nonlinear Schrödinger equation in the presence of shear and surface tension. We show that the presence of shear induces a strong coupling between the carrier wave and the mean-surface displacement. The effects of the background shear on the modulational instability of plane waves is also studied, where it is shown that shear can suppress instability, although not for all carrier wavelengths in the presence of surface tension. These results expand upon the findings of Thomas et al. (Phys. Fluids, vol. 24 (12), 2012, 127102). Using a modification of the generalized Lagrangian mean theory in Andrews & McIntyre (J. Fluid Mech., vol. 89, 1978, pp. 609–646) and approximate formulas for the velocity field in the fluid column, explicit, asymptotic approximations for the Lagrangian and Stokes drift velocities are obtained for plane-wave and Jacobi elliptic function solutions of the nonlinear Schrödinger equation. Numerical approximations to particle trajectories for these solutions are found and the Lagrangian and Stokes drift velocities corresponding to these numerical solutions corroborate the theoretical results. We show that background currents have significant effects on the mean transport properties of waves. In particular, certain combinations of background shear and carrier wave frequency lead to the disappearance of mean-surface mass transport. These results provide a possible explanation for the measurements reported in Smith (J. Phys. Oceanogr., vol. 36, 2006, pp. 1381–1402). Our results also provide further evidence of the viability of the modification of the Stokes drift velocity beyond the standard monochromatic approximation, such as recently proposed in Breivik et al. (J. Phys. Oceanogr., vol. 44, 2014, pp. 2433–2445) in order to obtain a closer match to a range of complex ocean wave spectra.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablowitz, M. J., Fokas, A. S. & Musslimani, Z. H. 2006 On a new non-local formulation of water waves. J. Fluid Mech. 562, 313343.Google Scholar
Andrews, D. G. & McIntyre, M. E. 1978 An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech. 89, 609646.Google Scholar
Ardhuin, F., Rascle, N. & Belibassakis, K. A. 2008 Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Model. 20, 3560.Google Scholar
Ashton, A. C. L. & Fokas, A. S. 2011 A non-local formulation of rotational water waves. J. Fluid Mech. 689, 129148.Google Scholar
Baumstein, A. I. 1998 Modulation of gravity waves with shear in water. Stud. Appl. Maths 100, 365390.Google Scholar
Borluk, H. & Kalisch, H. 2012 Particle dynamics in the KdV approximation. Wave Motion 49, 691709.Google Scholar
Breivik, Ø., Janssen, P. A. E. M. & Bidlot, J. R. 2014 Approximate Stokes drift profiles in deep water. J. Phys. Oceanogr. 44, 24332445.Google Scholar
Brevik, I. 1979 Higher-order waves propagating on constant vorticity currents in deep water. Coast. Engng 2, 237259.Google Scholar
Bühler, O. 2009 Waves and Mean Flows. Cambridge University Press.Google Scholar
Choi, W. 2009 Nonlinear surface waves interacting with a linear shear current. Maths Comput. Simul. 80, 101110.Google Scholar
Constantin, A. 2011 Nonlinear Water Waves with Applications to Wave–Current Interactions and Tsunamis. SIAM.Google Scholar
Craik, A. D. D. 1982a The drift velocity of water waves. J. Fluid Mech. 116, 187205.Google Scholar
Craik, A. D. D. 1982b The generalized Lagrangian-mean equations and hydrodynamic stability. J. Fluid Mech. 125, 2735.Google Scholar
Craik, A. D. D. 1982c Wave-induced longitudinal-vortex instability in shear flows. J. Fluid Mech. 125, 3752.Google Scholar
Craik, A. D. D. 1988 Wave Interactions and Fluid Flows. Cambridge University Press.Google Scholar
Dysthe, K. B. 1979 Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc. R. Soc. Lond. A 369, 105114.Google Scholar
Fokas, A. S. 2008 A Unified Approach to Boundary Value Problems. SIAM.Google Scholar
Folland, G. 1999 Real Analysis: Modern Techniques and Their Applications. Wiley.Google Scholar
Freeman, N. C. & Johnson, R. S. 1970 Shallow water waves on shear flows. J. Fluid Mech. 42, 401409.Google Scholar
Gallet, B. & Young, W. R. 2014 Refraction of swell by ocean currents. J. Mar. Res. 72, 105126.Google Scholar
Helfrich, K. R. & Melville, W. K. 2006 Long nonlinear internal waves. Annu. Rev. Fluid Mech. 38, 395425.Google Scholar
Longuet-Higgins, M. S. 1953 Mass transport in water waves. Phil. Trans. R. Soc. Lond. 245, 535581.Google Scholar
McWilliams, J. C., Sullivan, P. P. & Moeng, C. H. 1997 Langmuir turbulence in the ocean. J. Fluid Mech. 334, 130.Google Scholar
Miche, A. 1944 Mouvements ondulatoires de la mer en profondeur croissante ou décroissante. Forme limite de la houle lors de son déferlement. Application aux digues maritimes. Troisième partie. Forme et propriétés des houles limites lors du déferlement. Croissance des vitesses vers la rive. Annal. Ponts Chaussées 114, 369406.Google Scholar
Monismith, S. G., Cowen, E. A., Nepf, H. M., Magnaudet, J. & Thais, L. 2007 Laboratory observations of mean flows under surface gravity waves. J. Fluid Mech. 573, 131147.Google Scholar
Phillips, W. R. C. 2005 On the spacing of Langmuir circulation in strong shear. J. Fluid Mech. 525, 215236.Google Scholar
Phillips, W. R. C., Dai, A. & Tjan, K. K. 2010 On Lagrangian drift in shallow-water waves on moderate shear. J. Fluid Mech. 660, 221239.Google Scholar
Pullin, D. I. & Grimshaw, R. 1983 Interfacial progressive gravity waves in a two-layer shear flow. Phys. Fluids 26, 17311739.Google Scholar
Pullin, D. I. & Grimshaw, R. 1986 Stability of finite-amplitude interfacial waves. Part 3. The effect of basic current shear for one-dimensional instabilities. J. Fluid. Mech. 172, 277306.Google Scholar
Ribeiro, R., Milewski, P. A. & Nachbin, A. 2017 Flow structure beneath rotational water waves with stagnation points. J. Fluid Mech. 812, 792814.Google Scholar
Simmen, J. A. & Saffman, P. G. 1985 Steady deep-water waves on a linear shear current. Stud. Appl. Maths 75, 3557.Google Scholar
Smith, J. A. 2006 Observed variability of ocean wave Stokes drift, and the Eulerian response to passing groups. J. Phys. Oceanogr. 36, 13811402.Google Scholar
Teles da Silva, A. F. & Peregrine, D. H. 1988 Steep, steady surface waves on wter of finite depth with constant vorticity. J. Fluid Mech. 195, 281302.Google Scholar
Thomas, R., Kharif, C. & Manna, M. 2012 A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity. Phys. Fluids 24 (12), 127102.Google Scholar
Vasan, V. & Oliveras, K. 2014 Pressure beneath a traveling wave with constant vorticity. J. Discrete Continuous Dyn. Syst. 34, 32193239.Google Scholar
Wahlén, E. 2007 A Hamiltonian formulation of water waves with constant vorticity. Lett. Math. Phys. 79, 303315.Google Scholar
Wahlén, E. 2009 Steady water waves with a critical layer. J. Differ. Equ. 246, 24682483.Google Scholar
Webb, A. & Fox-Kemper, B. 2011 Wave spectral moments and Stokes drift estimation. Ocean Model. 40, 273288.Google Scholar