Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T16:53:59.895Z Has data issue: false hasContentIssue false

Pattern selection in ternary mushy layers

Published online by Cambridge University Press:  24 July 2017

Peter Guba
Affiliation:
Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava 4, Slovakia
Daniel M. Anderson*
Affiliation:
Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8910, USA
*
Email address for correspondence: danders1@gmu.edu

Abstract

We consider finite-amplitude convection in a mushy layer during the primary solidification of a ternary alloy. Previous linear stability theories applied to ternary alloy primary-solidification models have identified an exceptional class of direct convective instability when all the individual stratifying agencies (one thermal and two solutal) were statically stabilizing. A reduced model, in which the effects of latent heat, solute rejection and background solidification are neglected, contains the essential interactions that admit qualitatively the same instability. We examine pattern selection for steady convection in this model. We find that roll, square or hexagonal convection patterns can be nonlinearly stable, depending on the relative importance of a number of physical effects, namely the solutal diffusion rates, the liquidus slopes and the background thermal and solutal density stratifications. The results for a special case are found to isolate a purely double-diffusive phase-change mechanism of pattern selection. Subcritical behaviour is identified inside the domain of individual static stability. A physical system is proposed that may be a promising one in which to experimentally identify these novel instabilities.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitta, A., Huppert, H. E. & Worster, M. G. 2001a Diffusion-controlled solidification of a ternary melt from a cooled boundary. J. Fluid Mech. 432, 201217.Google Scholar
Aitta, A., Huppert, H. E. & Worster, M. G. 2001b Solidification in ternary systems. In Interactive Dynamics of Convection and Solidification (ed. Ehrhard, P., Riley, D. S. & Steen, P. H.), pp. 113122. Kluwer.Google Scholar
Alexandrov, D. V. & Ivanov, A. A. 2009 Nonlinear dynamics of directional solidification of ternary solutions with mushy layers. Heat Mass Transfer 45, 14671472.Google Scholar
Anderson, D. M. 2003 A model for diffusion-controlled solidification of ternary alloys in mushy layers. J. Fluid Mech. 483, 165197.Google Scholar
Anderson, D. M., McFadden, G. B., Coriell, S. R. & Murray, B. T. 2010 Convective instabilities during the solidification of an ideal ternary alloy in a mushy layer. J. Fluid Mech. 647, 309333.Google Scholar
Anderson, D. M. & Schulze, T. P. 2005 Linear and nonlinear convection in solidifying ternary alloys. J. Fluid Mech. 545, 213243.Google Scholar
Anderson, D. M. & Worster, M. G. 1995 Weakly nonlinear analysis of convection in mushy layers during the solidification of binary alloys. J. Fluid Mech. 302, 307331.Google Scholar
Anderson, D. M. & Worster, M. G. 1996 A new oscillatory instability in a mushy layer during the solidification of binary alloys. J. Fluid Mech. 307, 245267.Google Scholar
Bale, C. W., Chartrand, P., Degterov, S. A., Eriksson, G., Hack, K., Ben Mahfoud, R., Melanon, J., Pelton, A. D. & Petersen, S. 2002 FactSage thermochemical software and databases. Calphad 26, 189228.Google Scholar
Bennon, W. D. & Incropera, F. P. 1987 A continuum model for momentum, heat and species transport in binary solid–liquid phase change systems – II. Application to solidification in a rectangular cavity. Intl J. Heat Mass Transfer 30, 21712187.Google Scholar
Bloomfield, L. J. & Huppert, H. E. 2003 Solidification and convection of a ternary solution cooled from the side. J. Fluid Mech. 489, 269299.Google Scholar
Bodenschatz, E., Pesch, W. & Ahlers, G. 2000 Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32, 709778.Google Scholar
Busse, F. 1978 Non-linear properties of thermal convection. Rep. Prog. Phys. 41, 19291967.Google Scholar
Buzano, E. & Golubitsky, M. 1983 Bifurcation on the hexagonal lattice and the planar Bénard problem. Phil. Trans. R. Soc. Lond. A 308, 617667.Google Scholar
Cocks, F. H. & Brower, W. E. 1974 Phase diagram relationships in cryobiology. Cryobiology 11, 340358.Google Scholar
Copley, S. M., Giamei, A. F., Johnson, S. M. & Hornbecker, M. F. 1970 The origin of freckles in unidirectionally solidified castings. Metall. Trans. 1, 21932204.Google Scholar
Davis, S. H. 2001 Theory of Solidification. Cambridge University Press.Google Scholar
Felicelli, S. D., Poirier, D. R. & Heinrich, J. C. 1997 Macrosegregation patterns in multicomponent Ni-base alloys. J. Cryst. Growth 177, 145161.Google Scholar
Felicelli, S. D., Poirier, D. R. & Heinrich, J. C. 1998 Modeling freckle formation in three dimensions during solidification of multicomponent alloys. Metall. Mater. Trans. B 29, 847855.Google Scholar
Fowler, A. C. 1997 Mathematical Models in the Applied Sciences. Cambridge University Press.Google Scholar
Fujii, T., Poirier, D. R. & Flemings, M. C. 1979 Macrosegregation in a multicomponent low alloy steel. Metall. Trans. B 10, 331339.Google Scholar
Fujimura, K. 1991 Methods of centre manifold and multiple scales in the theory of weakly nonlinear stability for fluid motions. Proc. R. Soc. Lond. A 434, 719733.Google Scholar
Giamei, A. F. & Kear, B. H. 1970 On the nature of freckles in nickel base superalloys. Metall. Trans. 1, 21852192.Google Scholar
Golovin, A. A., Matkowsky, B. J. & Volpert, V. A. 2008 Turing pattern formation in the Brusselator model with superdiffusion. SIAM J. Appl. Maths 69, 251272.Google Scholar
Golubitsky, M., Swift, J. W. & Knobloch, E. 1984 Symmetries and pattern selection in Rayleigh–Bénard convection. Physica D 10, 249276.Google Scholar
Guba, P. & Anderson, D. M. 2014 Diffusive and phase change instabilities in a ternary mushy layer. J. Fluid Mech. 760, 634669.Google Scholar
Harned, H. S. & Hudson, R. M. 1951 The differential diffusion coefficient of potassium nitrate in dilute aqueous solutions at 25° . J. Am. Chem. Soc. 73, 652654.Google Scholar
Horton, C. W. & Rogers, F. T. Jr. 1945 Convection currents in a porous medium. J. Appl. Phys. 16, 367370.Google Scholar
Jenkins, D. R. 1987 Rolls versus squares in thermal convection of fluids with temperature-dependent viscosity. J. Fluid Mech. 178, 491506.Google Scholar
Jenkins, D. R. & Proctor, M. R. E. 1984 The transition from roll to square-cell solutions in Rayleigh–Bénard convection. J. Fluid Mech. 139, 461471.Google Scholar
Katz, R. F. & Worster, M. G. 2008 Simulation of directional solidification, thermochemical convection, and chimney formation in a Hele–Shaw cell. J. Comput. Phys. 227, 98239840.Google Scholar
Kealy, B. J. & Wollkind, D. J. 2012 A nonlinear stability analysis of vegetative Turing pattern formation for an interaction–diffusion plant-surface water model system in an arid flat environment. Bull. Math. Biol. 74, 803833.CrossRefGoogle Scholar
Krane, M. J. M. & Incropera, F. P. 1997 Solidification of ternary metal alloys–II. Prediction of convective phenomena and solidification behaviour of Pb–Sb–Sn alloys. Intl J. Heat Mass Transfer 40, 38373847.Google Scholar
Krane, M. J. M., Incropera, F. P. & Gaskell, D. R. 1997 Solidification of ternary metal alloys–I. Model development. Intl J. Heat Mass Transfer 40, 38273835.Google Scholar
Krane, M. J. M., Incropera, F. P. & Gaskell, D. R. 1998 Solidification of a ternary metal alloy: a comparison of experimental measurements and model predictions in a Pb–Sb–Sn system. Metall. Mater. Trans. A 29, 843853.Google Scholar
Kuske, R. & Matkowsky, B. J. 1994 On roll, square and hexagonal cellular flames. Eur. J. Appl. Maths 5, 6593.Google Scholar
Kuske, R. & Milewski, P. 1999 Modulated two-dimensional patterns in reaction–diffusion systems. Eur. J. Appl. Maths 10, 157184.Google Scholar
Lapwood, E. R. 1948 Convection of a fluid in a porous medium. Proc. Camb. Phil. Soc. 44, 508521.CrossRefGoogle Scholar
Lupis, C. H. P. 1993 Chemical Thermodynamics of Materials. Massachusetts Institute of Technology.Google Scholar
McDonald, R. J. & Hunt, J. D. 1969 Fluid motion through the partially solid regions of a casting and its importance in understanding A type segregation. Trans. Metal. Soc. AIME 245, 19931997.Google Scholar
McDonald, R. J. & Hunt, J. D. 1970 Convective fluid motion within the interdendritic liquid of a casting. Metall. Trans. 1, 17871788.Google Scholar
Nield, D. A. & Bejan, A. 1998 Convection in Porous Media. Springer.Google Scholar
Notz, D. & Worster, M. G. 2009 Desalinization processes of sea ice revisited. J. Geophys. Res. 114, C05006.Google Scholar
Palm, E., Weber, J. E. & Kvernvold, O. 1972 On steady convection in a porous medium. J. Fluid Mech. 54, 153161.CrossRefGoogle Scholar
Rees Jones, D. W. & Worster, M. G. 2014 A physically based parameterization of gravity drainage for sea–ice modelling. J. Geophys. Res. Oceans 119, 55995621.Google Scholar
Riahi, D. N. 2014 On three-dimensional non-linear buoyant convection in ternary solidification. Trans. Porous Med. 103, 249277.Google Scholar
Sample, A. & Hellawell, A. 1982 The effect of mold precession on channel and macro-segregation in ammonium chloride–water analog castings. Metall. Trans. B 13, 495501.Google Scholar
Sample, A. & Hellawell, A. 1984 The mechanisms of formation and prevention of channel segregation during alloy solidification. Metall. Trans. A 15, 21632173.Google Scholar
Sarazin, J. R. & Hellawell, A. 1988 Channel formation in Pb–Sn, Pb–Sb, and Pb–Sn–Sb alloy ingots and comparison with the system NH4Cl–H2O. Metall. Trans. A 19, 18611871.Google Scholar
Schneider, M. C., Gu, J. P., Beckermann, C., Boettinger, W. J. & Kattner, U. R. 1997 Modeling of micro- and macrosegregation and freckle formation in single-crystal nickel-base superalloy directional solidification. Metall. Mater. Trans. A 28, 15171531.Google Scholar
Schulze, T. P. & Worster, M. G. 1998 A numerical investigation of steady convection in mushy layers during the directional solidification of binary alloys. J. Fluid Mech. 356, 199220.Google Scholar
Skeldon, A. C. & Guidoboni, G. 2007 Pattern selection for Faraday waves in an incompressible viscous fluid. SIAM J. Appl. Maths 67, 10641100.Google Scholar
Smallman, R. E. & Bishop, R. J. 1999 Modern Physical Metallurgy and Materials Engineering. Butterworth and Heinemann.Google Scholar
Tait, S. & Jaupart, C. 1992 Compositional convection in a reactive crystalline mush and melt differentiation. J. Geophys. Res. 97, 67356756.Google Scholar
Thompson, A. F., Huppert, H. E. & Worster, M. G. 2003a A global conservation model for diffusion-controlled solidification of a ternary alloy. J. Fluid Mech. 483, 191197.Google Scholar
Thompson, A. F., Huppert, H. E., Worster, M. G. & Aitta, A. 2003b Solidification and compositional convection of a ternary alloy. J. Fluid Mech. 497, 167199.Google Scholar
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.Google Scholar
Wells, A. J., Wettlaufer, J. S. & Orszag, S. A. 2010 Maximal potential energy transport: a variational principle for solidification problems. Phys. Rev. Lett. 105, 254502.Google Scholar
Wells, A. J., Wettlaufer, J. S. & Orszag, S. A. 2013 Nonlinear mushy-layer convection with chimneys: stability and optimal solute fluxes. J. Fluid Mech. 716, 203227.Google Scholar
Worster, M. G. 1991 Natural convection in a mushy layer. J. Fluid Mech. 224, 335359.Google Scholar
Worster, M. G. 1992 The dynamics of mushy layers. In Interactive Dynamics of Convection and Solidification (ed. Davis, S. H., Huppert, H. E., Muller, U. & Worster, M. G.), pp. 113138. Kluwer.CrossRefGoogle Scholar
Worster, M. G. 1997 Convection in mushy layers. Annu. Rev. Fluid Mech. 29, 91122.Google Scholar
Worster, M. G. 2000 Solidification of fluids. In Perspectives in Fluid Dynamics (ed. Batchelor, G. K., Moffatt, H. K. & Worster, M. G.), pp. 393446. Cambridge University Press.Google Scholar
Worster, M. G. & Kerr, R. C. 1994 The transient behavior of alloys solidified from below prior to the formation of chimneys. J. Fluid Mech. 269, 2344.Google Scholar
Yeh, H. S. & Wills, G. B. 1970 Diffusion coefficient of sodium nitrate in aqueous solution at 25 °C as a function of concentration from 0.1 to 1.0 M. J. Chem. Engng Data 15, 187189.Google Scholar
Supplementary material: PDF

Guba and Anderson supplementary material

Guba and Anderson supplementary material 1

Download Guba and Anderson supplementary material(PDF)
PDF 8.8 MB