Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T11:36:07.109Z Has data issue: false hasContentIssue false

Pilot-wave dynamics in a rotating frame: the onset of orbital instability

Published online by Cambridge University Press:  10 October 2023

Nicholas Liu
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Matthew Durey
Affiliation:
School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow G12 8QQ, UK
John W.M. Bush*
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: bush@math.mit.edu

Abstract

We report the results of a theoretical investigation of the stability of a hydrodynamic analogue of Landau levels, specifically circular orbits arising when a millimetric droplet self-propels along the surface of a vibrating, rotating liquid bath. Our study elucidates the form of the stability diagram characterising the critical memory at which circular orbits destabilise, and the form of instability. Particular attention is given to rationalising observations reported in prior experimental works, including the prevalence of resonant wobbling instabilities, in which the instability frequency is approximately twice the orbital frequency. We also explore the physical mechanism responsible for the onset of instability. Specifically, we compare the efficacy of different heuristic arguments proposed in prior studies, including propositions that the most unstable orbits arise when their radii correspond to the zeros of Bessel functions or when their associated wave intensity is extremised. We establish a new relation between orbital stability and the mean wave field, which supersedes existing heuristic arguments and suggests a rationale for the alternate wobbling and monotonic instabilities arising at onset as the orbital radius is increased progressively.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I.A. 1948 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55. US Government Printing Office.Google Scholar
Arbelaiz, J., Oza, A.U. & Bush, J.W.M. 2018 Promenading pairs of walking droplets: dynamics and stability. Phys. Rev. Fluids 3, 013604.CrossRefGoogle Scholar
Bacot, V., Perrard, S., Labousse, M., Couder, Y. & Fort, E. 2019 Multistable free states of an active particle from a coherent memory dynamics. Phys. Rev. Lett. 122, 104303.CrossRefGoogle ScholarPubMed
Bakker, M. & Temme, N.M. 1984 Sum rule for products of Bessel functions: comments on a paper by Newberger. J. Math. Phys. 25 (5), 12661267.CrossRefGoogle Scholar
Benjamin, T.B. & Ursell, F. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225, 505515.Google Scholar
Bleistein, N. & Handelsman, R.A. 1975 Asymptotic Expansions of Integrals. Ardent Media.Google Scholar
Borghesi, C., Moukhtar, J., Labousse, M., Eddi, A., Fort, E. & Couder, Y. 2014 Interaction of two walkers: wave-mediated energy and force. Phys. Rev. E 90, 063017.CrossRefGoogle ScholarPubMed
de Broglie, L. 1926 Ondes et Mouvements. Gauthier-Villars.Google Scholar
de Broglie, L. 1930 An Introduction to the Study of Wave Mechanics. Methuen & Co.Google Scholar
Bush, J.W.M. 2015 Pilot-wave hydrodynamics. Annu. Rev. Fluid Mech. 47, 269–292.CrossRefGoogle Scholar
Bush, J.W.M. & Oza, A.U. 2020 Hydrodynamic quantum analogs. Rep. Prog. Phys. 84, 017001.CrossRefGoogle ScholarPubMed
Bush, J.W.M., Oza, A.U. & Moláček, J. 2014 The wave-induced added mass of walking droplets. J. Fluid Mech. 755, R7.CrossRefGoogle Scholar
Couchman, M.M.P. & Bush, J.W.M. 2020 Free rings of bouncing droplets: stability and dynamics. J. Fluid Mech. 903, A49.CrossRefGoogle Scholar
Couchman, M.M.P., Turton, S.E. & Bush, J.W.M. 2019 Bouncing phase variations in pilot-wave hydrodynamics and the stability of droplet pairs. J. Fluid Mech. 871, 212243.CrossRefGoogle Scholar
Couder, Y. & Fort, E. 2006 Single particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97, 154101.CrossRefGoogle Scholar
Couder, Y., Fort, E., Gautier, C.-H. & Boudaoud, A. 2005 a From bouncing to floating: noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94, 177801.CrossRefGoogle ScholarPubMed
Couder, Y., Protière, S., Fort, E. & Boudaoud, A. 2005 b Walking and orbiting droplets. Nature 437, 208.CrossRefGoogle ScholarPubMed
Cristea-Platon, T., Sáenz, P.J. & Bush, J.W.M. 2018 Walking droplets in a circular corral: quantisation and chaos. Chaos 28, 096116.CrossRefGoogle Scholar
Delves, L.M. & Lyness, J.N. 1967 A numerical method for locating the zeros of an analytic function. Math. Comput. 21 (100), 543560.CrossRefGoogle Scholar
Durey, M. 2018 Faraday wave-droplet dynamics: a hydrodynamic quantum analogue. PhD thesis, University of Bath.Google Scholar
Durey, M. & Bush, J.W.M. 2021 Classical pilot-wave dynamics: the free particle. Chaos 31, 033136.CrossRefGoogle ScholarPubMed
Durey, M. & Milewski, P.A. 2017 Faraday wave-droplet dynamics: discrete-time analysis. J. Fluid Mech. 821, 296329.CrossRefGoogle Scholar
Durey, M., Milewski, P.A. & Bush, J.W.M. 2018 Dynamics, emergent statistics and the mean-pilot-wave potential of walking droplets. Chaos 28, 096108.CrossRefGoogle ScholarPubMed
Durey, M., Milewski, P.A. & Wang, Z. 2020 a Faraday pilot-wave dynamics in a circular corral. J. Fluid Mech. 891, A3.CrossRefGoogle Scholar
Durey, M., Turton, S.E. & Bush, J.W.M. 2020 b Speed oscillations in classical pilot-wave dynamics. Proc. R. Soc. A 476, 20190884.CrossRefGoogle ScholarPubMed
Eddi, A., Fort, E., Moisy, F. & Couder, Y. 2009 Unpredictable tunneling of a classical wave–particle association. Phys. Rev. Lett. 102, 240401.CrossRefGoogle ScholarPubMed
Eddi, A., Sultan, E., Moukhtar, J., Fort, E., Rossi, M. & Couder, Y. 2011 Information stored in Faraday waves: the origin of a path memory. J. Fluid Mech. 674, 433463.CrossRefGoogle Scholar
Ellegaard, C. & Levinsen, M.T. 2020 Interaction of wave-driven particles with slit structures. Phys. Rev. E 102, 023115.CrossRefGoogle ScholarPubMed
Fort, E., Eddi, A., Moukhtar, J., Boudaoud, A. & Couder, Y. 2010 Path-memory induced quantization of classical orbits. Proc. Natl Acad. Sci. 107 (41), 1751517520.CrossRefGoogle Scholar
Galeano-Rios, C.A., Couchman, M.M.P., Caldairou, P. & Bush, J.W.M. 2018 Ratcheting droplet pairs. Chaos 28, 096112.CrossRefGoogle ScholarPubMed
Gradshteyn, I.S. & Ryzhik, I.M. 2014 Table of Integrals, Series, and Products. Academic Press.Google Scholar
Harris, D.M. & Bush, J.W.M. 2014 Drops walking in a rotating frame: from quantized orbits to multimodal statistics. J. Fluid Mech. 739, 444464.CrossRefGoogle Scholar
Harris, D.M., Moukhtar, J., Fort, E., Couder, Y. & Bush, J.W.M. 2013 Wavelike statistics from pilot-wave dynamics in a circular corral. Phys. Rev. E 88, 011001.CrossRefGoogle Scholar
Hubert, M., Labousse, M., Perrard, S., Labousse, M., Vandewalle, N. & Couder, Y. 2019 Tunable bimodal explorations of space from memory-driven deterministic dynamics. Phys. Rev. E 100, 032201.CrossRefGoogle ScholarPubMed
Hubert, M., Perrard, S., Vandewalle, N. & Labousse, M. 2022 Overload wave-memory induces amnesia of a self-propelled particle. Nat. Commun. 13 (1), 4357.CrossRefGoogle ScholarPubMed
Kurianski, K.M., Oza, A.U. & Bush, J.W.M. 2017 Simulations of pilot-wave dynamics in a simple harmonic potential. Phys. Rev. Fluids 2, 113602.CrossRefGoogle Scholar
Labousse, M. 2014 Étude d'une dynamique à mémoire de chemin: une expérimentation théorique. PhD thesis, Université Pierre et Marie Curie UPMC Paris VI.Google Scholar
Labousse, M., Oza, A.U., Perrard, S. & Bush, J.W.M. 2016 a Pilot-wave dynamics in a harmonic potential: quantization and stability of circular orbits. Phys. Rev. E 93, 033122.CrossRefGoogle Scholar
Labousse, M. & Perrard, S. 2014 Non-Hamiltonian features of a classical pilot-wave dynamics. Phys. Rev. E 90, 022913.CrossRefGoogle ScholarPubMed
Labousse, M., Perrard, S., Couder, Y. & Fort, E. 2014 Build-up of macroscopic eigenstates in a memory-based constrained system. New J. Phys. 16, 113027.CrossRefGoogle Scholar
Labousse, M., Perrard, S., Couder, Y. & Fort, E. 2016 b Self-attraction into spinning eigenstates of a mobile wave source by its emission back-reaction. Phys. Rev. E 94, 042224.CrossRefGoogle ScholarPubMed
Miles, J. & Henderson, D. 1990 Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22, 143165.CrossRefGoogle Scholar
Moláček, J. & Bush, J.W.M. 2013 a Droplets bouncing on a vibrating fluid bath. J. Fluid Mech. 727, 582611.CrossRefGoogle Scholar
Moláček, J. & Bush, J.W.M. 2013 b Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory. J. Fluid Mech. 727, 612647.CrossRefGoogle Scholar
Newberger, B.S. 1982 New sum rule for products of Bessel functions with application to plasma physics. J. Math. Phys. 23 (7), 12781281.CrossRefGoogle Scholar
Oza, A.U. 2014 A trajectory equation for walking droplets: hydrodynamic pilot-wave theory. PhD thesis, Massachusetts Institute of Technology.CrossRefGoogle Scholar
Oza, A.U., Harris, D.M., Rosales, R.R. & Bush, J.W.M. 2014 a Pilot-wave dynamics in a rotating frame: on the emergence of orbital quantization. J. Fluid Mech. 744, 404429.CrossRefGoogle Scholar
Oza, A.U., Rosales, R.R. & Bush, J.W.M. 2013 A trajectory equation for walking droplets: hydrodynamic pilot-wave theory. J. Fluid Mech. 737, 552570.CrossRefGoogle Scholar
Oza, A.U., Rosales, R.R. & Bush, J.W.M. 2018 Hydrodynamic spin states. Chaos 28, 096106.CrossRefGoogle ScholarPubMed
Oza, A.U., Siéfert, E., Harris, D.M., Moláček, J. & Bush, J.W.M. 2017 Orbiting pairs of walking droplets: dynamics and stability. Phys. Rev. Fluids 2, 053601.CrossRefGoogle Scholar
Oza, A.U., Wind-Willassen, Ø., Harris, D.M, Rosales, R.R. & Bush, J.W.M. 2014 b Pilot-wave hydrodynamics in a rotating frame: exotic orbits. Phys. Fluids 26, 082101.CrossRefGoogle Scholar
Perrard, S., Labousse, M., Fort, E. & Couder, Y. 2014 a Chaos driven by interfering memory. Phys. Rev. Lett. 113, 104101.CrossRefGoogle ScholarPubMed
Perrard, S., Labousse, M., Miskin, M., Fort, E. & Couder, Y. 2014 b Self-organization into quantized eigenstates of a classical wave-driven particle. Nat. Commun. 5, 3219.CrossRefGoogle ScholarPubMed
Pucci, G., Harris, D.M., Faria, L.M. & Bush, J.W.M. 2018 Walking droplets interacting with single and double slits. J. Fluid Mech. 835, 11361156.CrossRefGoogle Scholar
Sáenz, P.J., Cristea-Platon, T. & Bush, J.W.M. 2018 Statistical projection effects in a hydrodynamic pilot-wave system. Nat. Phys. 14, 315319.CrossRefGoogle Scholar
Sáenz, P.J., Cristea-Platon, T. & Bush, J.W.M. 2020 A hydrodynamic analog of Friedel oscillations. Sci. Adv. 6 (20), eaay9234.CrossRefGoogle ScholarPubMed
Sáenz, P.J., Pucci, G., Turton, S.E., Goujon, A., Rosales, R.R., Dunkel, J. & Bush, J.W.M. 2021 Emergent order in hydrodynamic spin lattices. Nature 596, 5862.CrossRefGoogle ScholarPubMed
Tadrist, L., Gilet, T., Schlagheck, P. & Bush, J.W.M. 2020 Predictability in a hydrodynamic pilot-wave system: resolution of walker tunneling. Phys. Rev. E 102, 013104.CrossRefGoogle Scholar
Tadrist, L., Shim, J.-B., Gilet, T. & Schlagheck, P. 2018 Faraday instability and subthreshold Faraday waves: surface waves emitted by walkers. J. Fluid Mech. 848, 906945.CrossRefGoogle Scholar
Tambasco, L.D. & Bush, J.W.M. 2018 Exploring orbital dynamics and trapping with a generalized pilot-wave framework. Chaos 28, 096115.CrossRefGoogle ScholarPubMed
Thomson, S.J., Durey, M. & Rosales, R.R. 2020 Collective vibrations of a hydrodynamic active lattice. Proc. R. Soc. A 476, 20200155.CrossRefGoogle ScholarPubMed
Turton, S.E., Couchman, M.M.P. & Bush, J.W.M. 2018 A review of the theoretical modeling of walking droplets: towards a generalized pilot-wave framework. Chaos 28, 096111.CrossRefGoogle Scholar