Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T07:19:07.006Z Has data issue: false hasContentIssue false

The plane turbulent shear layer with periodic excitation

Published online by Cambridge University Press:  20 April 2006

H. E. Fiedler
Affiliation:
Herman-Föttinger-Institut für Thermo- und Fluiddynamik, Technische Universität Berlin
P. Mensing
Affiliation:
Herman-Föttinger-Institut für Thermo- und Fluiddynamik, Technische Universität Berlin Present address: Amt für Umweltschutz, Hamburg.

Abstract

The influence of periodic excitation on a plane turbulent one-stream shear layer with turbulent separation was investigated. For the qualitative study flow visualization was employed. Quantitative data were obtained with hot-wire anemometry and spectrum analysis. It was found that sinusoidal perturbations with frequencies of order f0 [lsim ] u0/100θ0 (depending on excitation strength), introduced at the trailing edge are always amplified. Maximum amplification factors are observed for the lowest perturbation levels. The frequency and amplitude of excitation determine the downstream location of the amplification maximum in the flow. At sufficient amplitude two-dimensional vortices are formed which subsequently decay without pairing. The development of the periodic r.m.s. values along x follows a universal curve for all frequencies and amplitudes when properly normalized.

At high excitation amplitudes the flow development depends strongly on the geometrical conditions of the excitation arrangement at the trailing edge. Thus regular vortex pairing as well as suppression of pairing can be achieved.

The excited shear layer has considerably stronger, yet nonlinear, spread than the neutral. The region of vortex formation, irrespective of whether it includes pairing or not, is associated with a step-like increase in width, while after the position of maximum vortex energy, i.e. in the region of decay, the spread is reduced to values below the neutral. There the overall lateral fluctuation energy is increased, while the longitudinal may be decreased as compared with the neutral flow.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradshaw P.1966 The effect of initial conditions on the development of a free shear layer. J. Fluid Mech. 26, 225236.Google Scholar
Browand, F. K. & Ho C.-M.1983 The mixing layer: an example of quasi two-dimensional turbulence. J. Méc. Numéro Spécial: Turbulence & idimensionelle, pp. 99120.Google Scholar
Browand, F. K. & Troutt T.1980 A note on spanwise structure in the two-dimensional mixing layer. J. Fluid Mech. 97, 771.Google Scholar
Brown, G. & Roshko A.1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775816.Google Scholar
Fiedler H., Dziomba B., Mensing, P. & Rösgen T.1981 Initiation, evolution and global consequences of coherent structures in turbulent shear flows. In The Role of Coherent Structures in Modelling Turbulence and Mixing (ed. J. Jimenez). Lecture Notes in Physics, vol. 136, pp. 219251. Springer.
Freymuth P.1966 On transition in a separated laminar boundary layer. J. Fluid Mech. 25, 683704.Google Scholar
Ho, C.-M. & Huang L.-S.1982 Subharmonics and vortex merging in mixing layers. J. Fluid Mech. 119, 443473.Google Scholar
Hussain A. K. M. F.1983 Coherent structures - reality and myth. Phys. Fluids 26, 28162850.Google Scholar
Hussain, A. K. M. F. & Zedan M. F.1978a Effects of the initial condition on the axisymmetric free shear layer: effects of the initial momentum thickness. Phys. Fluids 21, 11001111.Google Scholar
Hussain, A. K. M. F. & Zedan M. F.1978b Effects of the initial condition on the axisymmetric free shear layer: Effects on initial fluctuation level. Phys. Fluids 21, 14751481.Google Scholar
Herman, M. A. & Jimenez J.1982 Computer analysis of a high-speed film of the plane turbulent mixing layer. J. Fluid Mech. 119, 323345.Google Scholar
Jimenez J.1980 On the visual growth of a turbulent mixing layer. J. Fluid Mech. 96, pp. 447460.Google Scholar
Korschelt D.1980 Experimentelle Untersuchungzum Wärme-und Stofftransport im turbulenten ebenen Freistrahl mit periodischer Anregung am Düsenaustritt. Dissertation Hermann-Föttinger-Institut, TU Berlin.
Mensing P.1981 Einflu kontrollierter Störungen auf eine ebene turbulente Scherschicht. Dissertation Hermann-Föttinger-Institut, TU Berlin.
Mensing, P. & Fiedler H.1980 Eine Methode zur Sichtbarmachung von hochturbulenten Luftströmungen mit groen Reynoldszahlen. Z. Flugwiss. Weltraumforsch. 4, 366369.Google Scholar
Michalke A.1971 Instabilität eines kompressiblen runden Freistrahls unter Berücksichtigung des Einflusses der Strahlgrenzschichtdicke. Z. Flugwiss. Weltraumforsch. 19, 319.Google Scholar
Miksad R. W.1972 Experiments on the nonlinear stages of free-shear-layer transition. J. Fluid Mech. 56, 695719.Google Scholar
Miksad R. W.1973 Experiments on nonlinear interactions in the transition of a free shear layer. J. Fluid Mech. 59, 121.Google Scholar
Oster, D. & Wygnanski I.1982 The forced mixing layer between parallel streams. J. Fluid Mech. 123, 91130.Google Scholar
Saffman P. G.1980 Coherent structures in turbulent flow. In The Role of Coherent Structures in Modelling Turbulence and Mixing (ed. J. Jimenez). Lecture Notes in Physics, vol. 136, pp. 19. Springer.
Smith, A. M. O. & Clutter D. W.1957 The smallest height of roughness capable of affecting boundary layer transitions in low-speed flow. Douglas Aircraft Co. Inc., Rep. ES 26803.Google Scholar
Takaki, R. & Fiedler H.1980 A phenomenological model of the organized vortex in the two-dimensional mixing layer. IUTAM Symp. Yugoslavia.Google Scholar
Wei Z.-L., Niu, Z.-N. & Ma W.-J.1982 The disturbances affect Brown-Roshko structures in plane mixing layer. In Structure of Complex Turbulent Shear Flow, IUTAM Symposium Marseille (ed. R. Dumas & L. Fulachier), pp. 137145.
Wood, D.-H. & Bradshaw P.1982 A turbulent mixing layer constrained by a solid surface. Part 1. Measurements before reaching the surface. J. Fluid Mech. 122, pp. 5789.Google Scholar
Wygnanski I., Oster, D. & Fiedler H.1979 A forced, plane, turbulent mixing layer; a challenge for the predictor. Proc. 2nd Symp. on Turbulent Shear Flows, London.
Zaman, K. B. M. Q. & Hussain A. K. M. F.1981 Turbulence suppression in free shear flows. J. Fluid Mech. 103, 133150.Google Scholar