Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T06:10:35.841Z Has data issue: false hasContentIssue false

Plunging cavities

Published online by Cambridge University Press:  18 July 2011

C. CLANET*
Affiliation:
LadHyX, UMR7646 du CNRS, Ecole Polytechnique, 91128 Palaiseau, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

When a wave breaks, the tip forms a liquid sheet which impinges the base and creates an air cavity which breaks into bubbles. Gomez-Ledesma, Kiger & Duncan (J. Fluid Mech., this issue, vol. 680, 2011, pp. 5–30) have conducted a nice experiment on this problem, enabling them to discuss both the inclination of the jet and the effect of its translation. This work has interesting links with other transient cavities.

Type
Focus on Fluids
Copyright
Copyright © Cambridge University Press 2011

References

Aristoff, J. M. & Bush, J. W. M. 2009 Water entry of small hydrophobic spheres. J. Fluid Mech. 619, 4578.CrossRefGoogle Scholar
Banner, M. L. & Peregrine, D. H. 1993 Wave breaking in deep water. Annu. Rev. Fluid Mech. 25, 373397.CrossRefGoogle Scholar
Battjes, J. A. 1988 Surf-zone dynamics. Annu. Rev. Fluid Mech. 20, 257293.CrossRefGoogle Scholar
Bergmann, R., van der Meer, D., Gekle, S., van der Bos, A. & Lohse, D. 2009 Controlled impact of a disk on a water surface: cavity dynamics. J. Fluid Mech. 633, 381409.CrossRefGoogle Scholar
Bonmarin, P. 1989 Geometric properties of deep-water breaking waves. J. Fluid Mech. 209, 405433.Google Scholar
Deane, G. B. & Stokes, M. D. 2002 Scale dependence of bubble creation mechanisms in breaking waves. Nature 418, 839844.CrossRefGoogle ScholarPubMed
Duclaux, V., Caillé, F., Duez, C., Ybert, C., Bocquet, L. & Clanet, C. 2007 Dynamics of transient cavities. J. Fluid Mech. 591, 119.Google Scholar
Gomez-Ledesma, R., Kiger, K. T. & Duncan, J. H. 2011 Air entrainment due to a two-dimensional translating plunging jet. J. Fluid Mech. 680, 530.Google Scholar
Jessup, A. T., Zappa, C. J., Loewen, M. R. & Hesany, V. 1997 Infrared remote sensing of breaking waves. Nature 385, 5255.Google Scholar
Kimmoun, O. & Branger, H. 2007 A particle image velocimetry investigation on laboratory surf-zone breaking waves over a sloping beach. J. Fluid Mech. 588, 353397.CrossRefGoogle Scholar
Le Goff, A., Quéré, D. & Clanet, C. 2011 Viscous cavities. Phys. Fluids (submitted).Google Scholar
Miller, R. L. 1957 Role of vortices in surf zone prediction, sedimentation and wave forces. In Beach and Nearshore Sedimentation (ed. Davis, R. A. & Ethington, R. L.), pp. 92114. Society of Economic Paleontologists and Mineralogists.Google Scholar
Noblesse, F., Delhommeau, G., Guilbaud, M., Hendrix, D. & Yang, C. 2008 Simple analytical relations for ship bow waves. J. Fluid Mech. 600, 105132.CrossRefGoogle Scholar
Pomeau, Y., Jamin, T., Le Bars, M., Le Gal, P. & Audoly, B. 2008 a Law of spreading of the crest of a breaking wave. Proc. R. Soc. Lond. A 464, 18511866.Google Scholar
Pomeau, Y., Le Berre, M., Guyenne, P. & Grilli, S. 2008 b Wave-breaking and generic singularities of nonlinear hyperbolic equations. Nonlinearity 21, T61T79.Google Scholar
Shakeri, M., Tavakolinejad, M. & Duncan, J. H. 2009 An experimental investigation of divergent bow waves simulated by a two-dimensional plus temporal wave marker technique. J. Fluid Mech. 634, 217243.Google Scholar
Zhu, Y., Oguz, H. N. & Prosperetti, A. 2000 On the mechanism of air entrainment by liquid jets at a free surface. J. Fluid Mech. 404, 151177.CrossRefGoogle Scholar