Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T04:45:12.549Z Has data issue: false hasContentIssue false

Prediction of the hub vortex instability in a wind turbine wake: stability analysis with eddy-viscosity models calibrated on wind tunnel data

Published online by Cambridge University Press:  30 May 2014

F. Viola
Affiliation:
Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
G. V. Iungo
Affiliation:
Wind Engineering and Renewable Energy Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
S. Camarri*
Affiliation:
Department of Civil and Industrial Engineering, University of Pisa, Pisa 56122, Italy
F. Porté-Agel
Affiliation:
Wind Engineering and Renewable Energy Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
F. Gallaire
Affiliation:
Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
*
Email address for correspondence: s.camarri@ing.unipi.it

Abstract

The instability of the hub vortex observed in wind turbine wakes has recently been studied by Iungo et al. (J. Fluid Mech., vol. 737, 2013, pp. 499–526) via local stability analysis of the mean velocity field measured through wind tunnel experiments. This analysis was carried out by neglecting the effect of turbulent fluctuations on the development of the coherent perturbations. In the present paper, we perform a stability analysis taking into account the Reynolds stresses modelled by eddy-viscosity models, which are calibrated on the wind tunnel data. This new formulation for the stability analysis leads to the identification of one clear dominant mode associated with the hub vortex instability, which is the one with the largest overall downstream amplification. Moreover, this analysis also predicts accurately the frequency of the hub vortex instability observed experimentally. The proposed formulation is of general interest for the stability analysis of swirling turbulent flows.

Type
Rapids
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

del Àlamo, J. C. & Jimenez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.CrossRefGoogle Scholar
Bottaro, A., Soueid, H. & Galletti, B. 2006 Formation of secondary vortices in turbulent square-duct flow. AIAA J. 44 (4), 803811.CrossRefGoogle Scholar
Chamorro, L. P. & Porté-Agel, F. 2009 A wind-tunnel investigation of wind-turbine wakes: boundary-layer turbulence effects. Boundary-Layer Meteorol. 132 (1), 129149.CrossRefGoogle Scholar
Cossu, C., Pujals, G. & Depardon, S. 2009 Optimal transient growth and very large-scale structures in turbulent boundary layers. J. Fluid Mech. 619, 7994.CrossRefGoogle Scholar
Crouch, J. D., Garbaruk, A. & Magidov, D. 2007 Predicting the onset of flow unsteadiness based on global instability. J. Comput. Phys. 224, 924940.CrossRefGoogle Scholar
España, M., Aubrun, S., Loyer, S. & Devinant, P. 2011 Spatial study of the wake meandering using modelled wind turbines in a wind tunnel. J. Wind Energy 14 (7), 923937.CrossRefGoogle Scholar
Iungo, G. V., Viola, F., Camarri, S., Porté Agel, F. & Gallaire, F. 2013 Linear stability analysis of wind turbine wakes performed on wind tunnel measurements. J. Fluid Mech. 737, 499526.CrossRefGoogle Scholar
Kang, S., Yang, X. & Sotiropoulos, F. 2014 On the onset of wake meandering for an axial flow turbine in a turbulent open channel flow. J. Fluid Mech. 744, 376403.CrossRefGoogle Scholar
Kitsios, V., Cordier, L., Bonnet, J.-P., Ooi, A. & Soria, J. 2010 Development of a nonlinear eddy-viscosity closure for the triple-decomposition stability analysis of a turbulent channel. J. Fluid Mech. 664, 74107.CrossRefGoogle Scholar
Kitsios, V., Cordier, L., Bonnet, J.-P., Ooi, A. & Soria, J. 2011 On the coherent structures and stability properties of a leading-edge separated aerofoil with turbulent recirculation. J. Fluid Mech. 683, 395416.CrossRefGoogle Scholar
Medici, D. & Alfredsson, P. H. 2006 Mesurements on a wind turbine wake: 3D effects and bluff body vortex shedding. Wind Energy 9 (3), 219236.CrossRefGoogle Scholar
Medici, D. & Alfredsson, P. H. 2008 Measurements behind model wind turbines: further evidence of wake meandering. Wind Energy 11, 211217.CrossRefGoogle Scholar
Meliga, P., Pujals, G. & Serre, E. 2012 Sensitivity of 2-D turbulent flow past a D-shaped cylinder using global stability. Phys. Fluids 24, 061701.CrossRefGoogle Scholar
Oberleithner, K., Paschereit, C. O. & Wygnanski, I. 2014 On the impact of swirl on the growth of coherent structures. J. Fluid Mech. 741, 156199.CrossRefGoogle Scholar
Okulov, V. L., Naumov, I. V., Mikkelsen, R. F., Kabardin, I. K. & Sørensen, J. 2014 A regular Strouhal number for large-scale instability in the far wake of a rotor. J. Fluid Mech. 747, 369380.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Reau, N. & Tumin, A. 2002 On harmonic perturbations in a turbulent mixing layer. Eur. J. Mech. (B/Fluids) 21 (2), 143155.CrossRefGoogle Scholar
Reynolds, W. C. & Hussain, K. M. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54, 263288.CrossRefGoogle Scholar
Wu, Y. T. & Porté-Agel, F. 2011 Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations. Boundary-Layer Meteorol. 138 (3), 345366.CrossRefGoogle Scholar
Zhang, W., Markfort, C. D. & Porté-Agel, F. 2012 Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer. Exp. Fluids 52 (5), 12191235.CrossRefGoogle Scholar