Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T06:52:04.321Z Has data issue: false hasContentIssue false

Pressure wave generation from perturbed premixed flames

Published online by Cambridge University Press:  17 May 2016

Mathieu Blanchard*
Affiliation:
Laboratoire d’Hydrodynamique (LadHyX), Ecole Polytechnique, 91128 Palaiseau, France TEYS, Centre de Recherche du Bouchet, Héraklès Safran Group, 91710 Vert-Le-Petit, France
Peter J. Schmid
Affiliation:
Department of Mathematics, Imperial College London, London SW7 2AZ, UK
Denis Sipp
Affiliation:
ONERA-DAFE, 8 Rue des Vertugadins, 92190 Meudon, France
Thierry Schuller
Affiliation:
Laboratoire EM2C, CNRS, Centrale-Supélec, Université Paris Saclay, Grande Voie des Vignes, 92295 Châtenay-Malabry, France
*
Email address for correspondence: mathieu.blanchard@herakles.com

Abstract

Numerical simulations and perturbation analysis of a radially imploding laminar premixed flame are used to study the mechanisms responsible for the generation of pressure fluctuations at flame fronts for various Lewis numbers. The relative importance of mechanisms based on unsteady heat release and on vorticity is investigated using an optimization methodology. Particular attention is paid to the influence of non-axisymmetric conditions and local flame curvature. It is shown that vorticity-based noise generation prevails for high-wavenumber, non-axisymmetric disturbances at all curvatures, while heat-release-driven noise generation dominates the axisymmetric and low-wavenumber regimes. These results indicate that short-wavelength vorticity waves actively participate in flame acoustic activity and can surpass acoustic output mechanisms based on heat-release fluctuations in the vicinity of the flame front.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abugov, D. & Obrezkov, O. 1978 Acoustic noise in turbulent flames. Combust. Explos. Shock Waves 14, 606612.Google Scholar
Birbaud, A., Ducruix, S., Durox, D. & Candel, S. 2008 The nonlinear response of inverted ‘V’-flames to equivalence ratio nonuniformities. Combust. Flame 154 (3), 356367.CrossRefGoogle Scholar
Blackshear, P. 1953 Driving standing waves by heat addition. Symp. Combust. 4 (1), 553566.Google Scholar
Blanchard, M., Schuller, T., Sipp, D. & Schmid, P. J. 2015 Response analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier–Stokes solver. Phys. Fluids 27 (4), 043602.Google Scholar
Boyer, L. & Quinard, J. 1990 On the dynamics of anchored flames. Combust. Flame 82 (1), 5165.Google Scholar
Bui, P., Schröder, W. & Meinke, M. 2006 Source term evaluation of the APE-RF system. In 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), American Institute of Aeronautics and Astronautics.Google Scholar
Candel, S., Durox, D., Ducruix, S., Birbaud, A.-L., Noiray, N. & Schuller, T. 2009 Flame dynamics and combustion noise: progress and challenges. Intl J. Aeroacoust. 8 (1), 156.Google Scholar
Candel, S., Durox, D. & Schuller, T. 2004 Flame interactions as a source of noise and combustion instabilities. In 10th AIAA/CEAS Aeroacoustics Conference, pp. 14441454. American Institute of Aeronautics and Astronautics.Google Scholar
Candel, S. & Poinsot, T. 1990 Flame stretch and the balance equation for the flame area. Combust. Sci. Technol. 70 (1–3), 115.Google Scholar
Chu, B.-T. 1965 On the energy transfer to small disturbances in fluid flow (Part I). Acta Mechanica 1 (3), 215234.Google Scholar
Chu, B.-T. & Kovásznay, L. S. G. 1958 Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3 (5), 494514.Google Scholar
Clavin, P. & Siggia, E. 1991 Turbulent premixed flames and sound generation. Combust. Sci. Technol. 78, 147155.Google Scholar
Crighton, D. G., Dowling, A. P., Ffowcs Williams, J. E., Heckl, M. & Leppington, F. G. 1992 Thermoacoustic sources and instabilities. In Modern Methods in Analytical Acoustics, pp. 378405. Springer.CrossRefGoogle Scholar
Dowling, A. & Mahmoudi, Y. 2015 Combustion noise. Proc. Combust. Inst. 35, 65100.Google Scholar
Driscoll, J. 2008 Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34, 91134.Google Scholar
Geiser, G., Schlimpert, S. & Schroeder, W. 2013 Combustion modeling effects on the thermoacoustic sources of a laminar premixed flame. In 19th AIAA/CEAS Aeroacoustics Conference, American Institute of Aeronautics and Astronautics.Google Scholar
Hanifi, A., Schmid, P. J. & Henningson, D. S. 1996 Transient growth in compressible boundary layer flow. Phys. Fluids 8 (3), 826837.Google Scholar
Hurle, I. R., Price, R. B., Sugden, T. M. & Thomas, A. 1968 Sound emission from open turbulent premixed flames. Proc. R. Soc. Lond. A 303 (1475), 409427.Google Scholar
Katta, V. R., Carter, C. D., Fiechtner, G. J., Roquemore, W. M., Gord, J. R. & Rolon, J. C. 1998 Interaction of a vortex with a flat flame formed between opposing jets of hydrogen and air. Symp. Combust. 27 (1), 587594.Google Scholar
Kidin, N., Librovich, V., Roberts, J. & Vuillermoz, M. 1984 On sound sources in turbulent combustion. Prog. Astronaut. Aeronaut. 95, 343355.Google Scholar
Lighthill, M. J. 1952 On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A 211 (1107), 564587.Google Scholar
Luchini, P. & Bottaro, A. 2014 Adjoint equations in stability analysis. Annu. Rev. Fluid Mech. 46, 493517.Google Scholar
Mahan, J. & Karchmer, A.1991 Aeroacoustics of flight vehicles: theory and practice. Volume 1: Noise sources. Tech. Rep. NASA-L-16926-VOL-1. NASA Langley Research Center, NASA RP-1258.Google Scholar
Markstein, G. H. 1964 Nonsteady Flame Propagation. Pergamon.Google Scholar
Matalon, M., Cui, C. & Bechtold, J. K. 2003 Hydrodynamic theory of premixed flames: effects of stoichiometry, variable transport coefficients and arbitrary reaction orders. J. Fluid Mech. 487, 179210.CrossRefGoogle Scholar
Matalon, M. & Matkowsky, B. J. 1982 Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239259.Google Scholar
Pelce, P. & Clavin, P. 1982 Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219237.Google Scholar
Petersen, R. & Emmons, H. 1961 Stability of laminar flames. Phys. Fluids 4 (4), 456464.Google Scholar
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion. R.T. Edwards.Google Scholar
Poinsot, T., Veynante, D. & Candel, S. 1991 Quenching processes and premixed turbulent combustion diagrams. J. Fluid Mech. 228, 561606.Google Scholar
Poinsot, T. J. & Lele, S. K. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101 (1), 104129.Google Scholar
Powell, A. 1964 Theory of vortex sound. J. Acoust. Soc. Am. 36 (1), 177195.Google Scholar
Renard, P. H., Thévenin, D., Rolon, J. C. & Candel, S. 2000 Dynamics of flame–vortex interactions. Prog. Energy Combust. Sci. 26 (3), 225282.Google Scholar
Roberts, W. & Driscoll, J. 1991 A laminar vortex interacting with a premixed flame: measured formation of pockets of reactants. Combust. Flame 87, 245256.Google Scholar
Sandberg, R. D.2007 Governing equations for a new compressible Navier–Stokes solver in general cylindrical coordinates. Tech. Rep. AFM-07/07. School of Engineering Sciences, University of Southampton.Google Scholar
Schlimpert, S., Hemchandra, S., Meinke, M. & Schröder, W. 2015 Hydrodynamic instability and shear layer effect on the response of an acoustically excited laminar premixed flame. Combust. Flame 162 (2), 345367.Google Scholar
Schmid, P. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.Google Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.Google Scholar
Schuller, T., Durox, D. & Candel, S. 2003 Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners. Combust. Flame 135 (4), 525537.Google Scholar
Shalaby, H., Laverdant, A. & Thévenin, D. 2009 Direct numerical simulation of a realistic acoustic wave interacting with a premixed flame. Proc. Combust. Inst. 32, 14731480.Google Scholar
Smith, T. J. B. & Kilham, J. K. 1963 Noise generation by open turbulent flames. J. Acoust. Soc. Am. 35 (5), 715724.Google Scholar
Strahle, W. C. 1971 On combustion generated noise. J. Fluid Mech. 49 (2), 399414.CrossRefGoogle Scholar
Swaminathan, N., Xu, G., Dowling, A. P. & Balachandran, R. 2011 Heat release rate correlation and combustion noise in premixed flames. J. Fluid Mech. 681, 80115.Google Scholar
Talei, M., Brear, M. J. & Hawkes, E. R. 2011 Sound generation by laminar premixed flame annihilation. J. Fluid Mech. 679, 194218.Google Scholar
Talei, M., Hawkes, E. R. & Brear, M. J. 2013 A direct numerical simulation study of frequency and Lewis number effects on sound generation by two-dimensional forced laminar premixed flames. Proc. Combust. Inst. 34 (1), 10931100.Google Scholar
Truffaut, J.-M. & Searby, G. 1999 Experimental study of the Darrieus–Landau instability on an inverted-‘V’ flame, and measurement of the Markstein number. Combust. Sci. Technol. 149 (1–6), 3552.Google Scholar
Williams, G. 1985 Combustion Theory. Addison-Wesley.Google Scholar
Zhao, W. & Frankel, S. 2001 Numerical simulations of sound radiated from an axisymmetric premixed reacting jet. Phys. Fluids 13, 26712681.Google Scholar