Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T13:55:23.534Z Has data issue: false hasContentIssue false

Propagation of perturbations in a gas-liquid mixture

Published online by Cambridge University Press:  12 April 2006

V. V. Kuznetsov
Affiliation:
Institute of Thermophysics, Siberian Branch of the USSR Academy of Sciences, Novosibirsk
V. E. Nakoryakov
Affiliation:
Institute of Thermophysics, Siberian Branch of the USSR Academy of Sciences, Novosibirsk
B. G. Pokusaev
Affiliation:
Institute of Thermophysics, Siberian Branch of the USSR Academy of Sciences, Novosibirsk
I. R. Shreiber
Affiliation:
Institute of Thermophysics, Siberian Branch of the USSR Academy of Sciences, Novosibirsk

Abstract

The present investigation has been performed over a wide range of the dimensionless parameters characterizing the process of propagation of pressure perturbations in a gas-liquid mixture; these are the Reynolds number, and a dispersion parameter responsible for the relation between the values of dispersion and signal intensity. The values of the above parameters were changed mainly by varying the initial perturbation. The results obtained show a complete agreement between the Burgers-Korteweg-de Vries model and the real process of propagation of long-wave perturbations in a liquid with gas bubbles. In addition to signal propagation with the formation of monotonic and oscillatory shock waves, the propagation of signals in the form of solitary waves (solitons) and wave packets was observed experimentally. Data have been obtained on signal damping, energy dissipation and the influence of mixture viscosity on the signal evolution.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1969 In Fluid Dynamics Transaction, vol. IV (ed. W. Fiszdon, P. Kucharczyk & W. I. Prosnak), p. 425. Warszaw: PWN.
Benjamin, T. B. 1966 Proc. 6th Symp. Naval Hydrodyn. (ed. R. D. Cooper & S. W. Doroff), p. 121. Washington: Office Naval Res.
Berezin, Yu. A. & Karpman, V. I. 1966 Zh. Eksp. i Teor. Fiz. 51, 1557.
Devin, C. 1959 J. Acoust. Soc. Am. 31, 1654.
Hammack, J. L. & Segur, H. 1974 J. Fluid Mech. 65, 289.
Kutateladze, S. S. et al. 1972 Dokl. Akad. Nauk USSR 207, 313.
Nakoryakov, V. E. et al. 1975 In Wave Processes in Two-Phase Media (ed. S. S. Kutateladze), p. 54. Novosibirsk: Inst. Thermophys., Siberian Branch USSR Acad. Sci.
Nakoryakov, V. E., Sobolev, V. V. & Shreiber, I. R. 1972 Izv. Akad. Nauk USSR, Mekh. Zh. i Gaza 5, 71.
Nakoryakov, V. E., Sobolev, V. V. & Shreiber, I. R. 1975 In Wave Processes in Two-Phase Media (ed. S. S. Kutateladze), p. 5. Novosibirsk: Inst. Thermophys., Siberian Branch USSR Acad. Sci.
Nigmatulin, R. I., Khabeev, N. S. & Shagapov, V. SH. 1974 Dokl. Akad. Nauk USSR 214, 779.
Noordzij, L. 1973 Proc. IUTAM Symp. Non-Steady Flow of Water at High Speeds (ed. L. I. Sedov & G. Yu. Stepanov), p. 369. Moscow: Nauka.
Noordzij, L. & Wijngaarden, L. VAN 1974 J. Fluid Mech. 66, 115.
Otto, E. & Sudana, R. N. 1970 Phys. Fluids 13, 1432.
Pelinovsky, E. N. 1971 Zh. Prikl. Mekh. i Tech. Fiz. 2, 80.
Rudenko, O. V. & Soluyan, S. I. 1975 Theoretical Fundamentals of Non-Linear Acoustics. Moscow: Nauka.
Sagdeev, R. Z. 1964 Some Points of Plasma Theory, no. 4, p. 20. Moscow: Atomizdat.
Wijngaarden, L. Van 1968 J. Fluid Mech. 33, 465.
Wijngaarden, L. Van 1972 Ann. Rev. Fluid Mech. 4, 369.
Zabusky, N. J. & Kruskal, M. D. 1965 Phys. Rev. Lett. 15, 240.