Published online by Cambridge University Press: 26 April 2006
The evolution of small-amplitude finite-rate waves in fluids having high specific heats is studied adopting the assumption that the unperturbed state varies in the propagation direction. It is shown that this not only leads to quantitative changes of the results holding for homogeneous media but also gives rise to new phenomena. Most interesting, shocks are found to terminate at a finite distance from the origin if the fundamental derivative changes sign along the propagation path.