Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T06:53:25.570Z Has data issue: false hasContentIssue false

Quantitative three-dimensional imaging and the structure of passive scalar fields in fully turbulent flows

Published online by Cambridge University Press:  26 April 2006

Rahul R. Prasad
Affiliation:
Mason Laboratory, Yale University, New Haven, CT 06520, USA
K. R. Sreenivasan
Affiliation:
Mason Laboratory, Yale University, New Haven, CT 06520, USA

Abstract

The three-dimensional turbulent field of a passive scalar has been mapped quantitatively by obtaining, effectively instantaneously, several closely spaced parallel two-dimensional images; the two-dimensional images themselves have been obtained by laser-induced fluorescence. Turbulent jets and wakes at moderate Reynolds numbers are used as examples. The working fluid is water. The spatial resolution of the measurements is about four Kolmogorov scales. The first contribution of this work concerns the three-dimensional nature of the boundary of the scalar-marked regions (the ‘scalar interface’). It is concluded that interface regions detached from the main body are exceptional occurrences (if at all), and that in spite of the large structure, the randomness associated with small-scale convolutions of the interface are strong enough that any two intersections of it by parallel planes are essentially uncorrelated even if the separation distances are no more than a few Kolmogorov scales. The fractal dimension of the interface is determined directly by box-counting in three dimensions, and the value of 2.35 ± 0.04 is shown to be in good agreement with that previously inferred from two-dimensional sections. This justifies the use of the method of intersections. The second contribution involves the joint statistics of the scalar field and the quantity χ* (or its components), χ* being the appropriate approximation to the scalar ‘dissipation’ field in the inertial–convective range of scales. The third aspect relates to the multifractal scaling properties of the spatial intermittency of χ*; since all three components of χ* have been obtained effectively simultaneously, inferences concerning the scaling properties of the individual components and their sum have been possible. The usefulness of the multifractal approach for describing highly intermittent distributions of χ* and its components is explored by measuring the so-called singularity spectrum (or the f(α)-curve) which quantifies the spatial distribution of various strengths of χ*. Also obtained is a time sequence of two-dimensional images with the temporal resolution on the order of a few Batchelor timescales; this enables us to infer features of temporal intermittency in turbulent flows, and qualitatively the propagation speeds of the scalar interface. Finally, a few issues relating to the resolution effects have been addressed briefly by making point measurements with the spatial and temporal resolutions comparable with the Batchelor lengthscale and the corresponding timescale.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agüí, J. C. & Hesselink, L. 1988 J. Fluid Mech. 191, 19.
Batchelor, G. K. 1959 J. Fluid Mech. 5, 113.
Benzi, R., Paladin, G., Parisi, G. & Vulpiani, A. 1984 J. Phys. A 17, 3521.
Bilger, R. W., Antonia, R. A. & Sreenivasan, K. R. 1978 Phys. Fluids 19, 1471.
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.-P., Zaleski, S. & Zanetti, G. 1989 J. Fluid Mech. 204, 1.
Chatwin, P. C. & Sullivan, P. J. 1989 Phys. Fluids A 1, 761.
Chhabra, A., Jensen, R. & Sreenivasan, K. R. 1989 Phys. Rev. A 40, 4593
Chhabra, A., Meneveau, C., Jensen, R. V. & Sreenivasan, K. R. 1989 Phys. Rev. A 40, 5284
Corrsin, S. & Kistler, A. L. 1955 NACA Rep. 1244.
Dahm, W. & Buch, K. 1989 Poster paper (forum 13) in the Seventh Turbulent Shear Flow Conference, Stanford.
Dimotakis, P. E., Lye, R. C. M. & Papantoniou, D. A. 1983 Phys. Fluids 28, 3185.
Everson, R., Sirovich, L. & Sreenivasan, K. R. 1990 Phys. Lett. A (to appear).
Feigenbaum, M. J., Jensen, M. H. & Procaccia, I. 1986 Phys. Rev. Lett. 57, 1507.
Frisch, U. & Parisi, G. 1985 In Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics(ed. M. Ghil, R. Benzi & G. Parisi), p. 84. North-Holland.
Gouldin, F. C. 1988 AIAA J. 26, 1405.
Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I. & Shraiman, B. I. 1986 Phys. Rev. A 33, 1141
Hentschel, H. G. E. & Procaccia, I. 1983 Physica 8D, 435.
Klebanoff, P. S. 1955 NACA Rep. 1247.
Kolmogorov, A. N. 1962 J. Fluid Mech. 13, 82.
Kychakoff, G., Paul, P. H., Cruyningen, I. van & Hanson, R. K. 1987 Appl. Optics 26, 2498.
Lynch, M. K., Miller, P., Lewis, C. & Nosenchuck, D. M. 1985 Bull. Am. Phys. Soc. 30, 1751.
Mandelbrot, B. B. 1974 J. Fluid Mech. 62, 331.
Mandelbrot, B. B. 1982 The Fractal Geometry of Nature. W. H. Freeman.
Marstrand, J. M. 1954 Lond. Math. Soc. 3, 257.
Meneveau, C. & Sreenivasan, K. R. 1987 In The Physics of Chaos and Systems far from Equilibrium (ed. Minh-Duong Van), p. 49. Nuclear Phys. B (Proc. Suppl.) 2. North-Holland.
Meneveau, C. & Sreenivasan, K. R. 1989 Phys. Lett. A 137, 103
Pope, S. B. 1988 Intl J. Engng Sci. 26, 445.
Prasad, R. R. 1989 In Forum on Chaotic Dynamics in Fluid Mechanics, La Jolla. ASME.
Prasad, R. R., Meneveau, C. & Sreenivasan, K. R. 1988 Phys. Rev. Lett. 61, 74.
Prasad, R. R., Meneveau, C. & Sreenivasan, K. R. 1990 (in preparation).
Prasad, R. R. & Sreenivasan, K. R. 1989 Expts in Fluids 7, 259.
Prasad, R. R. & Sreenivasan, K. R. 1990 Phys. Fluids A (to appear).
Sreenivasan, K. R. 1985 J. Fluid Mech. 151, 81.
Sreenivasan, K. R., Antonia, R. A. & Danh, H. Q. 1977 Phys. Fluids 20, 1238.
Sreenivasan, K. R. & Meneveau, C. 1986 J. Fluid Mech. 173, 357.
Sreenivasan, K. R. & Meneveau, C. 1988 Phys. Rev. A 38, 6287
Sreenivasan, K. R. & Prasad, R. R. 1989 Physica D 38, 322.
Sreenivasan, K. R., Ramshankar, R. & Meneveau, C. 1989 Proc. R. Soc. Lond. A 421, 79
Townsend, A. A. 1948 Austral. J. Sci. Res. 23A, 451.
Ware, B. R., Cyr, D., Gorti, S. & Lanni, F. 1983 In Measurement of Suspended Particles by Quasi-Elastic Light Scattering (ed. B. E. Dahneke), p. 255. Wiley.
Yip, B. 1988 Ph.D. thesis, Yale University.
Yip, B., Fourgette, D. C. & Long, M. B. 1986 Appl. Optics 25, 3919.
Yip, B., Lam, J. K., Winter, M. & Long, M. B. 1987 Science 235, 1209.