Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T07:03:25.421Z Has data issue: false hasContentIssue false

Real-time modelling of wavepackets in turbulent jets

Published online by Cambridge University Press:  25 May 2017

Kenzo Sasaki*
Affiliation:
Aerodynamics Department, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228900, Brazil
Selene Piantanida
Affiliation:
Departement Fluides, Thermique et Combustion, Institut Pprime, 86036 Poitiers, France
André V. G. Cavalieri
Affiliation:
Aerodynamics Department, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228900, Brazil
Peter Jordan
Affiliation:
Departement Fluides, Thermique et Combustion, Institut Pprime, 86036 Poitiers, France
*
Email address for correspondence: kenzo_sasaki_89@yahoo.com.br

Abstract

Three methods are considered for estimating the downstream evolution of wavepackets in turbulent jets based on upstream measurements. The parabolised stability equations are used to compute a transfer function between axially and radially separated points in the flow, and the performance of this theoretical model is compared with that of two empirical approaches, direct transfer function calculation and autoregressive moving-average exogenous system identification, both of which require unsteady experimental data. The three approaches, which perform equally well, prove suitable for estimation of the downstream evolution of wavepackets using pressure data measured in the near-nozzle region. Over distances of the order of a couple of jet diameters, correlations of up to 80 % are observed between estimation and measurement. The performance deteriorates as axial separation between input and output is increased. While the two empirical approaches are limited in terms of both the number of input–output pairs and the number of flow variables that can be reasonably considered, the parabolised stability equations-based approach has no such limitation and can be used to perform full-field estimates comprising all of the dependent variables; in this it constitutes a potentially formidable means by which to perform single-input–multiple-output estimation. It has the further advantage of not requiring unsteady data for its construction, the only necessary ingredients being the mean flow and the linearised equations of motion.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baqui, Y., Agarwal, A., Cavalieri, A. V. G. & Sinayoko, S. 2013 Nonlinear and linear noise source mechanisms in subsonic jets. In 19th AIAA/CEAS Aeroacoustics Conference, AIAA Paper, vol. 2087.Google Scholar
Baqui, Y. B., Agarwal, A., Cavalieri, A. V. G. & Sinayoko, S. 2015 A coherence-matched linear source mechanism for subsonic jet noise. J. Fluid Mech. 776, 235267.Google Scholar
Belson, B. A., Semeraro, O., Rowley, C. W. & Henningson, D. S. 2013 Feedback control of instabilities in the two-dimensional blasius boundary layer: the role of sensors and actuators. Phys. Fluids 25 (5), 054106.Google Scholar
Bendat, J. S. & Piersol, A. G. 2011 Random Data: Analysis and Measurement Procedures, vol. 729. Wiley.Google Scholar
Breakey, D. E. S., Jordan, P., Cavalieri, A. V. G., Léon, O., Zhang, M., Lehnasch, G., Colonius, T. & Rodriguez, D. 2013 Near-field wavepackets and the far-field sound of a subsonic jet. In 19th AIAA/CEAS Aeroacoustics Conference, AIAA Paper, vol. 2083.Google Scholar
Cavalieri, A. V., Sasaki, K., Schmidt, O., Colonius, T., Jordan, P. & Bres, G. A. 2016 High-frequency wavepackets in turbulent jets. In 22nd AIAA/CEAS Aeroacoustics Conference, p. 3056.Google Scholar
Cavalieri, A. V. G. & Agarwal, A. 2014 Coherence decay and its impact on sound radiation by wavepackets. J. Fluid Mech. 748, 399415.Google Scholar
Cavalieri, A. V. G., Jordan, P., Colonius, T. & Gervais, Y. 2012 Axisymmetric superdirectivity in subsonic jets. J. Fluid Mech. 704, 388420.Google Scholar
Cavalieri, A. V. G., Rodríguez, D., Jordan, P., Colonius, T. & Gervais, Y. 2013 Wavepackets in the velocity field of turbulent jets. J. Fluid Mech. 730, 559592.Google Scholar
Colonius, T., Lele, S. K. & Moin, P. 1997 Sound generation in a mixing layer. J. Fluid Mech. 330, 375409.Google Scholar
Crighton, D. G. & Gaster, M. 1976 Stability of slowly diverging jet flow. J. Fluid Mech. 77 (2), 387413.Google Scholar
Crighton, D. G. & Huerre, P. 1990 Shear layer pressure fluctuations and superdirective acoustic sources. J. Fluid Mech. 220, 355368.Google Scholar
Dahan, J. A., Morgans, A. S. & Lardeau, S. 2012 Feedback control for form-drag reduction on a bluff body with a blunt trailing edge. J. Fluid Mech. 704, 360387.Google Scholar
Davis, S. H., Couder, Y., Pedley, T. J., Huerre, P. J., Jimenez, L. P. F., Moffatt, H. K., Worster, M. G., Huppert, H. E., Garrett, C. & Mcintyre, M. E. 2000 Perspectives in Fluid Dynamics, chap. 4, pp. 159229. Cambridge University Press.Google Scholar
Fabbiane, N., Simon, B., Fischer, F., Grundmann, S., Bagheri, S. & Henningson, D. S. 2015 On the role of adaptivity for robust laminar flow control. J. Fluid Mech. 767, R1.Google Scholar
Gloor, M., Obrist, D. & Kleiser, L. 2013 Linear stability and acoustic characteristics of compressible, viscous, subsonic coaxial jet flow. Phys. Fluids 25 (8), 084102.Google Scholar
Gudmundsson, K.2010 Instability wave models of turbulent jets from round and serrated nozzles. PhD thesis, California Institute of Technology.Google Scholar
Gudmundsson, K. & Colonius, T. 2011 Instability wave models for the near-field fluctuations of turbulent jets. J. Fluid Mech. 689, 97128.CrossRefGoogle Scholar
Herbert, T. 1997 Parabolized stability equations. Annu. Rev. Fluid Mech. 29 (1), 245283.CrossRefGoogle Scholar
Hervé, A., Sipp, D., Schmid, P. J. & Samuelides, M. 2012 A physics-based approach to flow control using system identification. J. Fluid Mech. 702, 2658.CrossRefGoogle Scholar
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45, 173195.Google Scholar
Kim, J. & Bewley, T. R. 2007 A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39, 383417.Google Scholar
Koenig, M., Sasaki, K., Cavalieri, A. V. G., Jordan, P. & Gervais, Y. 2016 Jet-noise control by fluidic injection from a rotating plug: linear and nonlinear sound-source mechanisms. J. Fluid Mech. 788, 358380.Google Scholar
Le Rallic, M., Jordan, P. & Gervais, Y. 2016 Jet-noise reduction: the effect of azimuthal actuation modes. In 22nd AIAA/CEAS Aeroacoustics Conference, p. 2868.Google Scholar
Léon, O. & Brazier, J.-P. 2011 Application of the linear parabolized stability equations to a subsonic coaxial jet. In 17th AIAA/CEAS Aeroacoustics Conference, 32nd AIAA Aeroacoustics Conference.Google Scholar
Malik, M. R. & Chang, C.-L. 2000 Nonparallel and nonlinear stability of supersonic jet flow. Comput. Fluids 29 (3), 327365.Google Scholar
Mohseni, K. & Colonius, T. 2000 Numerical treatment of polar coordinate singularities. J. Comput. Phys. 157 (2), 787795.Google Scholar
Nichols, J. W. & Lele, S. K. 2011 Global modes and transient response of a cold supersonic jet. J. Fluid Mech. 669, 225241.Google Scholar
Piantanida, S., Le Rallic, M. & Jordan, P.2014 ARMAX system identification applied to a subsonic turbulent jet. In 20th AIAA/CEAS Aeroacoustics Conference, p. 3058.Google Scholar
Ray, P. K. & Lele, S. K. 2007 Sound generated by instability wave/shock-cell interaction in supersonic jets. J. Fluid Mech. 587, 173215.Google Scholar
Reba, R., Narayanan, S. & Colonius, T. 2010 Wave-packet models for large-scale mixing noise. Intl J. Aeroacoust. 9 (4–5), 533557.Google Scholar
Rodríguez, D., Cavalieri, A. V. G., Colonius, T. & Jordan, P. 2014 A study of linear wavepacket models for subsonic turbulent jets using local eigenmode decomposition of PIV data. Eur. J. Mech. (B/Fluids) 49, 308321.Google Scholar
Sasaki, K.2014 Estudo e controle de pacotes de onda em jatos utilizando as equações de estabilidade parabolizadas (in portuguese). Master’s thesis, ITA – Instituto Tecnológico de Aeronáutica, São José dos Campos.Google Scholar
Sasaki, K., Tissot, G., Cavalieri, A. V. G., Silvestre, F. J., Jordan, P. & Biau, D. 2016 Closed-loop control of wavepackets in a free shear-flow. In 22nd AIAA/CEAS Aeroacoustic Conference and Exhibit, p. 2758.Google Scholar
Semeraro, O., Bagheri, S., Brandt, L. & Henningson, D. S. 2013 Transition delay in a boundary layer flow using active control. J. Fluid Mech. 731, 288311.Google Scholar
Sinha, A., Rodríguez, D., Brès, G. A. & Colonius, T. 2014 Wavepacket models for supersonic jet noise. J. Fluid Mech. 742, 7195.Google Scholar
Suzuki, T. & Colonius, T. 2006 Instability waves in a subsonic round jet detected using a near-field phased microphone array. J. Fluid Mech. 565, 197226.Google Scholar
Tam, C. K. W. & Burton, D. E. 1984 Sound generated by instability waves of supersonic flows. Part 2. Axisymmetric jets. J. Fluid Mech. 138, 273295.Google Scholar
Wei, M. & Freund, J. 2006 A noise controlled free shear flow. J. Fluid Mech. 546, 123152.Google Scholar