Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T13:49:02.629Z Has data issue: false hasContentIssue false

Resonant and non-resonant waves excited by periodic vortices in airflow over water

Published online by Cambridge University Press:  20 April 2006

J. P. Giovanangeli
Affiliation:
Institut de Mécanique Statistique de la Turbulence, Laboratoire Associé au C.N.R.S. No. 130, 12, Avenue du Général Leclerc, 13003 Marseille, France
A. Memponteil
Affiliation:
Institut de Mécanique Statistique de la Turbulence, Laboratoire Associé au C.N.R.S. No. 130, 12, Avenue du Général Leclerc, 13003 Marseille, France

Abstract

This paper describes an experimental study, conducted in the I.M.S.T. air–sea interaction tunnel, of waves excited on a water surface by a periodic train of vortices in the air flow above. The water surface, under some conditions, shows a rapidly developing resonant response, while in the non-resonant case waves propagate both upstream and downstream at speeds different from, but dependent upon, the vortex-convection speed.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Betchov, R. & Criminale, W. O. 1967 Stability of Parallel Flows. Academic.
Burg, J. P. 1968 A new analysis technique for time series data. Nato Advanced Study Institute on Signal Processing. Enschede, Netherlands.
Collis, J. C. & Williams, M. J. 1959 Two-dimensional convection from heated wires at low Reynolds numbers. J. Fluid Mech. 6, 357384.Google Scholar
Favre, A. & Coantic, M. 1974 Activities in, and preliminary results of, air–sea interactions research at I.M.S.T. Adv. Geophys. 18A, 391405.Google Scholar
Gelci, R., Ramamonjiarisoa, A. & Hervouet, J. Y. 1983 Generation de vagues de gravité par des allées de tourbillons aériens mobiles. To be published in J. Mécanique Théorique et Appliquée.Google Scholar
Giovanangeli, J. P. 1980 A non dimensional heat transfer law for a slanted hot film in water flow. Disa Info. n° 25, Copenhagen, Denmark.
Goldstein, S. (ed.) 1957 Modern Developments in Fluid Dynamics. Clarendon.
Hasselmann, K. 1968 Weak interaction theory of ocean waves. In Basic Developments in Fluid Dynamics (ed. H. Holt), p. 117. Academic.
Lacoss, R. T. 1977 Autoregressive and maximum likelihood spectral analysis methods. In Aspects of Signal Processing (ed. G. Tacconi), part 2, pp. 591614. Holland: Dordrecht.
Longuet-Higgins, M. S. 1977 Some effects of finite steepness on the generation of wave by wind. In A Voyage of Discovery: George Deacon 70th Anniversary Volume (ed. M. Angel), pp. 393403. Pergamon.
Memponteil, A. 1983 Réponse d'une surface d'eau à des mouvements tourbillonnaires dans l'écoulement d'air adjacent. Thèse de Doctorat de 3° Cycle, Université d'Aix-Marseille II.
Miles, J. W. 1960 On the generation of surface waves by turbulent shear flow. J. Fluid Mech. 7, 185204.Google Scholar
Mollo-Christensen, E. & Ramamonjiarisoa, A. 1978 Modeling the presence of wave groups in a random wave field. J. Geophys. Res. 83, 41174122.Google Scholar
Phillips, O. M. 1957 On the generation of waves by turbulent wind. J. Fluid Mech. 2, 417445.Google Scholar
Phillips, O. M. 1966 Dynamics of the Upper Ocean. Cambridge University Press.
Sedov, L. 1973 Mécanique des Milieux Continus. M.I.R. Ed., Moscow.
Stoker, J. J. 1957 Water Waves. Interscience.
Ulrych, T. J. & Jensen, O. 1974 Cross spectral analysis using maximum entropy. Geophys. 39, 000000.Google Scholar
Van Den Bos, A. 1971 Alternative interpretation of maximum entropy spectral analysis. IEEE Trans. Inform. Theory, vol. I, t. 17.
Wood, C. J. & Kirmani, S. F. A. 1970 Visualization of heaving aerofoil wakes including the effect of a jet flap. J. Fluid Mech. 41, 627640.Google Scholar