Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T22:33:16.195Z Has data issue: false hasContentIssue false

Role of particle-laden interfaces in shear-induced deformation of colloidal droplets

Published online by Cambridge University Press:  15 September 2022

Zheng Yuan Luo
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
Jie Qi
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
Bo Feng Bai*
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
*
Email address for correspondence: bfbai@mail.xjtu.edu.cn

Abstract

In this study, basing on the level-set and point-particle methods, we have developed a numerical methodology for simulating the dynamics of colloidal droplets under flow conditions in which the particle–particle, particle–interface and particle–fluid interactions are all taken into account efficiently. By using this methodology, we have determined the essential role of particle-laden interfaces in the deformation of colloidal droplets in simple shear flow with relatively low particle concentrations. Generally, adsorbed particles strongly enhance the deformability of the whole droplet, which is principally attributed to the particle-induced reduction of the effective surface tension. Systematic simulations are performed to reveal the detailed roles of interparticle interactions and particle surface coverage in the deformation of particle-covered droplets. Most importantly, we find the promotion effect of adsorbed particles on the droplet deformation cannot be completely included via the effective capillary number characterizing the particle-induced overall reduction of the effective surface tension, which is particularly obvious at high particle coverage. We propose two potential reasons for this surprising phenomenon, i.e. the convection-induced non-uniform distribution of adsorbed particles over the droplet surface and the particle-induced reduction of the droplet surface mobility, which have not been discussed yet in previous numerical and experimental studies of particle-covered droplets in shear flow.

JFM classification

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggarwal, N. & Sarkar, K. 2007 Deformation and breakup of a viscoelastic drop in a newtonian matrix under steady shear. J. Fluid Mech. 584, 121.CrossRefGoogle Scholar
Ammel, H.V., Moldenaers, P. & Cardinaels, R. 2020 Dynamics of sheared droplets filled with non-brownian particles. Rheol. Acta 59, 935949.CrossRefGoogle Scholar
Aveyard, R., Binks, B.P. & Clint, J.H. 2003 Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 100, 503546.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Basavaraj, M., Fuller, G., Fransaer, J. & Vermant, J. 2006 Packing, flipping, and buckling transitions in compressed monolayers of ellipsoidal latex particles. Langmuir 22, 66056612.CrossRefGoogle ScholarPubMed
Batista, C.A.S., Larson, R.G. & Kotov, N.A. 2015 Nonadditivity of nanoparticle interactions. Science 350, 1242477.CrossRefGoogle ScholarPubMed
Binks, B.P. 2002 Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci. 7, 2141.CrossRefGoogle Scholar
Boniello, G., Blanc, C., Fedorenko, D., Medfai, M., Mbarek, N.B., In, M., Gross, M., Stocco, A. & Nobili, M. 2015 Brownian diffusion of a partially wetted colloid. Nat. Mater. 14, 908911.CrossRefGoogle ScholarPubMed
Chai, Y., Hasnain, J., Bahl, K., Wong, M., Li, D., Geissler, P., Kim, P.Y., Jiang, Y., Gu, P. & Li, S. 2020 Direct observation of nanoparticle-surfactant assembly and jamming at the water-oil interface. Sci. Adv. 6, eabb8675.CrossRefGoogle ScholarPubMed
Cui, M., Emrick, T. & Russell, T.P. 2013 Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles. Science 342, 460463.CrossRefGoogle ScholarPubMed
Deshmukh, O.S., van den Ende, D., Stuart, M.C., Mugele, F. & Duits, M.H. 2015 Hard and soft colloids at fluid interfaces: adsorption, interactions, assembly & rheology. Adv. Colloid Interface Sci. 222, 215227.CrossRefGoogle ScholarPubMed
Dörr, A., Hardt, S., Masoud, H. & Stone, H.A. 2016 Drag and diffusion coefficients of a spherical particle attached to a fluid-fluid interface. J. Fluid Mech. 790, 607618.CrossRefGoogle Scholar
Du, K., Glogowski, E., Emrick, T., Russell, T.P. & Dinsmore, A.D. 2010 Adsorption energy of nano-and microparticles at liquid–liquid interfaces. Langmuir 26, 1251812522.CrossRefGoogle ScholarPubMed
Fan, H. & Striolo, A. 2012 Nanoparticle effects on the water-oil interfacial tension. Phys. Rev. E 86, 051610.CrossRefGoogle ScholarPubMed
Fischer, P. & Erni, P. 2007 Emulsion drops in external flow fields - the role of liquid interfaces. Curr. Opin. Colloid Interface Sci. 12, 196205.CrossRefGoogle Scholar
Frijters, S., Gunther, F. & Harting, J. 2012 Effects of nanoparticles and surfactant on droplets in shear flow. Soft Matt. 8, 65426556.CrossRefGoogle Scholar
Garbin, V. 2019 Collapse mechanisms and extreme deformation of particle-laden interfaces. Curr. Opin. Colloid Interface Sci. 39, 202211.CrossRefGoogle Scholar
Garbin, V., Jenkins, I., Sinno, T., Crocker, J.C. & Stebe, K.J. 2015 Interactions and stress relaxation in monolayers of soft nanoparticles at fluid-fluid interfaces. Phys. Rev. Lett. 114, 108301.CrossRefGoogle ScholarPubMed
Ge, Z., Loiseau, J.-C., Tammisola, O. & Brandt, L. 2018 An efficient mass-preserving interface-correction level set/ghost fluid method for droplet suspensions under depletion forces. J. Comput. Phys. 353, 435459.CrossRefGoogle Scholar
Gibou, F., Fedkiw, R. & Osher, S. 2018 A review of level-set methods and some recent applications. J. Comput. Phys. 353, 82109.CrossRefGoogle Scholar
Gounley, J., Boedec, G., Jaeger, M. & Leonetti, M. 2016 Influence of surface viscosity on droplets in shear flow. J. Fluid Mech. 791, 464494.CrossRefGoogle Scholar
Gu, C. & Botto, L. 2016 Direct calculation of anisotropic surface stresses during deformation of a particle-covered drop. Soft Matt. 12, 705716.CrossRefGoogle ScholarPubMed
Gu, C. & Botto, L. 2018 Buckling vs. Particle desorption in a particle-covered drop subject to compressive surface stresses: a simulation study. Soft Matt. 14, 711724.CrossRefGoogle Scholar
Gu, C. & Botto, L. 2020 Fipi: a fast numerical method for the simulation of particle-laden fluid interfaces. Comput. Phys. Commun. 256, 107447.CrossRefGoogle Scholar
Guazzelli, É & Pouliquen, O. 2018 Rheology of dense granular suspensions. J. Fluid Mech. 852, P1.CrossRefGoogle Scholar
Guido, S. 2011 Shear-induced droplet deformation: effects of confined geometry and viscoelasticity. Curr. Opin. Colloid Interface Sci. 16, 6170.CrossRefGoogle Scholar
Guzmán, E., Abelenda-Núñez, I., Maestro, A., Ortega, F., Santamaria, A. & Rubio, R.G. 2021 Particle-laden fluid/fluid interfaces: physico-chemical foundations. J. Phys. Condens. Matt. 33, 333001.CrossRefGoogle ScholarPubMed
Herzig, E.M., White, K.A., Schofield, A.B., Poon, W.C. & Clegg, P.S. 2007 Bicontinuous emulsions stabilized solely by colloidal particles. Nat. Mater. 6, 966971.CrossRefGoogle ScholarPubMed
Hua, X., Bevan, M.A. & Frechette, J. 2018 Competitive adsorption between nanoparticles and surface active ions for the oil–water interface. Langmuir 34, 48304842.CrossRefGoogle ScholarPubMed
Israelachvili, J.N. 2015 Intermolecular and Surface Forces. Academic Press.Google Scholar
Izbassarov, D. & Tammisola, O. 2020 Dynamics of an elastoviscoplastic droplet in a newtonian medium under shear flow. Phys. Rev. Fluids 5, 113301.CrossRefGoogle Scholar
Ji, X., Wang, X., Zhang, Y. & Zang, D. 2020 Interfacial viscoelasticity and jamming of colloidal particles at fluid-fluid interfaces: a review. Rep. Prog. Phys. 83, 126601.CrossRefGoogle ScholarPubMed
Kaganyuk, M. & Mohraz, A. 2020 Shear-induced deformation and interfacial jamming of solid-stabilized droplets. Soft Matt. 16, 44314443.CrossRefGoogle ScholarPubMed
Kennedy, M.R., Pozrikidis, C. & Skalak, R. 1994 Motion and deformation of liquid-drops, and the rheology of dilute emulsions in simple shear-flow. Comput. Fluids 23, 251278.CrossRefGoogle Scholar
Kim, P.Y., Gao, Y., Chai, Y., Ashby, P.D., Ribbe, A.E., Hoagland, D.A. & Russell, T.P. 2019 b Assessing pair interaction potentials of nanoparticles on liquid interfaces. ACS Nano 13, 30753082.CrossRefGoogle ScholarPubMed
Kim, B.L., Rendos, A., Ganesh, P. & Brown, K.A. 2019 a Failure of particle-laden interfaces studied using the funnel method. Colloids Interface Sci. Commun. 28, 5459.CrossRefGoogle Scholar
Komrakova, A.E., Shardt, O., Eskin, D. & Derksen, J.J. 2014 Lattice boltzmann simulations of drop deformation and breakup in shear flow. Intl J. Multiphase Flow 59, 2443.CrossRefGoogle Scholar
Lambert, R.A., Picano, F., Breugem, W.-P. & Brandt, L. 2013 Active suspensions in thin films: nutrient uptake and swimmer motion. J. Fluid Mech. 733, 528557.CrossRefGoogle Scholar
Li, X. & Pozrikidis, C. 1997 The effect of surfactants on drop deformation and on the rheology of dilute emulsions in stokes flow. J. Fluid Mech. 341, 165194.CrossRefGoogle Scholar
Liu, Y., Bhattacharya, A., Kuksenok, O., He, X., Aizenberg, M., Aizenberg, J. & Balazs, A.C. 2016 Computational modeling of oscillating fins that “catch and release” targeted nanoparticles in bilayer flows. Soft Matt. 12, 13741384.CrossRefGoogle ScholarPubMed
Luo, Z.Y. & Bai, B.F. 2018 Dynamics of capsules enclosing viscoelastic fluid in simple shear flow. J. Fluid Mech. 840, 656687.CrossRefGoogle Scholar
Luo, Z.Y. & Bai, B.F. 2020 Retardation of droplet transport in confined microchannel by interfacial jamming of nanoparticles. Phys. Fluids 32, 087110.CrossRefGoogle Scholar
Luo, Z.Y., He, L. & Bai, B.F. 2015 Deformation of spherical compound capsules in simple shear flow. J. Fluid Mech. 775, 77104.CrossRefGoogle Scholar
Luo, Z.Y., Shang, X.L. & Bai, B.F. 2019 a Effect of soluble surfactant on the motion of a confined droplet in a square microchannel. Phys. Fluids 31, 117104.Google Scholar
Luo, Z.Y., Shang, X.L. & Bai, B.F. 2019 b Influence of pressure-dependent surface viscosity on dynamics of surfactant-laden drops in shear flow. J. Fluid Mech. 858, 91121.CrossRefGoogle Scholar
Ma, Y.T., Bhattacharya, A., Kuksenok, O., Perchak, D. & Balazs, A.C. 2012 Modeling the transport of nanoparticle-filled binary fluids through micropores. Langmuir 28, 1141011421.CrossRefGoogle ScholarPubMed
Mandal, S., Das, S. & Chakraborty, S. 2017 Effect of marangoni stress on the bulk rheology of a dilute emulsion of surfactant-laden deformable droplets in linear flows. Phys. Rev. Fluids 2, 113604.CrossRefGoogle Scholar
Manga, M.S., Hunter, T.N., Cayre, O.J., York, D.W., Reichert, M.D., Anna, S.L., Walker, L.M., Williams, R.A. & Biggs, S.R. 2016 Measurements of submicron particle adsorption and particle film elasticity at oil–water interfaces. Langmuir 32, 41254133.CrossRefGoogle ScholarPubMed
Manikantan, H. & Squires, T.M. 2020 Surfactant dynamics: hidden variables controlling fluid flows. J. Fluid Mech. 892, P1.CrossRefGoogle ScholarPubMed
Mears, R., Muntz, I. & Thijssen, J.H. 2020 Surface pressure of liquid interfaces laden with micron-sized particles. Soft Matt. 16, 93479356.CrossRefGoogle ScholarPubMed
Mei, Y., Li, G., Moldenaers, P. & Cardinaels, R. 2016 Dynamics of particle-covered droplets in shear flow: unusual breakup and deformation hysteresis. Soft Matt. 12, 94079412.CrossRefGoogle ScholarPubMed
Mendoza, A.J., Guzman, E., Martinez-Pedrero, F., Ritacco, H., Rubio, R.G., Ortega, F., Starov, V.M. & Miller, R. 2014 Particle laden fluid interfaces: dynamics and interfacial rheology. Adv. Colloid Interface Sci. 206, 303319.CrossRefGoogle ScholarPubMed
Morris, J.F. 2020 Shear thickening of concentrated suspensions: recent developments and relation to other phenomena. Annu. Rev. Fluid Mech. 52, 121144.CrossRefGoogle Scholar
Mulligan, M.K. & Rothstein, J.P. 2011 Deformation and breakup of micro-and nanoparticle stabilized droplets in microfluidic extensional flows. Langmuir 27, 97609768.CrossRefGoogle ScholarPubMed
Perazzo, A., Tomaiuolo, G., Preziosi, V. & Guido, S. 2018 Emulsions in porous media: from single droplet behavior to applications for oil recovery. Adv. Colloid Interface Sci. 256, 305325.CrossRefGoogle ScholarPubMed
Pozrikidis, C. 2007 Particle motion near and inside an interface. J. Fluid Mech. 575, 333357.CrossRefGoogle Scholar
Rahman, S.E., Laal-Dehghani, N., Barman, S. & Christopher, G.F. 2019 Modifying interfacial interparticle forces to alter microstructure and viscoelasticity of densely packed particle laden interfaces. J. Colloid Interface Sci. 536, 3041.CrossRefGoogle ScholarPubMed
Rallison, J.M. 1984 The deformation of small viscous drops and bubbles in shear flows. Annu. Rev. Fluid Mech. 16, 4566.CrossRefGoogle Scholar
Ranka, M., Brown, P. & Hatton, T.A. 2015 Responsive stabilization of nanoparticles for extreme salinity and high-temperature reservoir applications. ACS Appl. Mater. Interfaces 7, 1965119658.CrossRefGoogle ScholarPubMed
Sethian, J.A. & Smereka, P. 2003 Level set methods for fluid interfaces. Annu. Rev. Fluid Mech. 35, 341372.CrossRefGoogle Scholar
Sharifi-Mood, N., Liu, I.B. & Stebe, K.J. 2015 Curvature capillary migration of microspheres. Soft Matt. 11, 67686779.CrossRefGoogle ScholarPubMed
Stone, H.A. 1994 Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26, 65102.CrossRefGoogle Scholar
Stone, H. & Leal, L. 1990 The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 220, 161186.CrossRefGoogle Scholar
Sussman, M. & Fatemi, E. 1999 An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20, 11651191.CrossRefGoogle Scholar
Suzuki, K. & Hayakawa, H. 2019 Theory for the rheology of dense non-brownian suspensions: divergence of viscosities and rheology. J. Fluid Mech. 864, 11251176.CrossRefGoogle Scholar
Taylor, G.I. 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. Ser. A 146, 501523.Google Scholar
Usta, O.B., Perchak, D., Clarke, A., Yeomans, J.M. & Balazs, A.C. 2009 Shear and extensional deformation of droplets containing polymers and nanoparticles. J. Chem. Phys. 130, 234905.CrossRefGoogle ScholarPubMed
Vlahovska, P.M., Blawzdziewicz, J. & Loewenberg, M. 2009 Small-deformation theory for a surfactant-covered drop in linear flows. J. Fluid Mech. 624, 293337.CrossRefGoogle Scholar
Vowinckel, B., Withers, J., Luzzatto-Fegiz, P. & Meiburg, E. 2019 Settling of cohesive sediment: particle-resolved simulations. J. Fluid Mech. 858, 544.CrossRefGoogle Scholar
Xie, Q. & Harting, J. 2018 From dot to ring: the role of friction in the deposition pattern of a drying colloidal suspension droplet. Langmuir 34, 53035311.CrossRefGoogle ScholarPubMed
Yu, W. & Zhou, C. 2011 Dynamics of droplet with viscoelastic interface. Soft Matt. 7, 63376346.CrossRefGoogle Scholar
Yue, P., Feng, J.J., Liu, C. & Shen, J. 2005 Viscoelastic effects on drop deformation in steady shear. J. Fluid Mech. 540, 427437.CrossRefGoogle Scholar
Zhang, Y., Wang, S., Zhou, J., Zhao, R., Benz, G., Tcheimou, S., Meredith, J.C. & Behrens, S.H. 2017 Interfacial activity of nonamphiphilic particles in fluid–fluid interfaces. Langmuir 33, 45114519.CrossRefGoogle ScholarPubMed
Zhao, M. & Yong, X. 2017 Modeling evaporation and particle assembly in colloidal droplets. Langmuir 33, 57345744.CrossRefGoogle ScholarPubMed
Zhao, M. & Yong, X. 2018 Nanoparticle motion on the surface of drying droplets. Phys. Rev. Fluids 3, 034201.CrossRefGoogle Scholar