Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T06:44:42.726Z Has data issue: false hasContentIssue false

Rossby-number effects on columnar eddy formation and the energy dissipation law in homogeneous rotating turbulence

Published online by Cambridge University Press:  18 December 2019

T. Pestana*
Affiliation:
Aerodynamics Group, Faculty of Aerospace Engineering, Kluyverweg 2, 2629 HS Delft, The Netherlands
S. Hickel
Affiliation:
Aerodynamics Group, Faculty of Aerospace Engineering, Kluyverweg 2, 2629 HS Delft, The Netherlands
*
Email address for correspondence: t.pestana@tudelft.nl

Abstract

Two aspects of homogeneous rotating turbulence are quantified through forced direct numerical simulations in an elongated domain, which, in the direction of rotation, is approximately 340 times larger than the typical initial eddy size. First, by following the time evolution of the integral length scale along the axis of rotation $\ell _{\Vert }$, the growth rate of the columnar eddies and its dependence on the Rossby number $Ro_{\unicode[STIX]{x1D700}}$ is determined as $\unicode[STIX]{x1D6FE}=3.90\exp (-16.72\,Ro_{\unicode[STIX]{x1D700}})$ for $0.06\leqslant Ro_{\unicode[STIX]{x1D700}}\leqslant 0.31$, where $\unicode[STIX]{x1D6FE}$ is the non-dimensional growth rate. Second, a scaling law for the energy dissipation rate $\unicode[STIX]{x1D700}_{\unicode[STIX]{x1D708}}$ is sought. Comparison with current available scaling laws shows that the relation proposed by Baqui & Davidson (Phys. Fluids, vol. 27(2), 2015, 025107), i.e. $\unicode[STIX]{x1D700}_{\unicode[STIX]{x1D708}}\sim {u^{\prime }}^{3}/\ell _{\Vert }$, where $u^{\prime }$ is the root-mean-square velocity, approximates well part of our data, more specifically the range $0.39\leqslant Ro_{\unicode[STIX]{x1D700}}\leqslant 1.54$. However, relations proposed in the literature fail to model the data for the second and most interesting range, i.e. $0.06\leqslant Ro_{\unicode[STIX]{x1D700}}\leqslant 0.31$, which is marked by the formation of columnar eddies. To find a similarity relation for the latter, we exploit the concept of a spectral transfer time introduced by Kraichnan (Phys. Fluids, vol. 8(7), 1965, p. 1385). Within this framework, the energy dissipation rate is considered to depend on both the nonlinear time scale and the relaxation time scale. Thus, by analysing our data, expressions for these different time scales are obtained that result in $\unicode[STIX]{x1D700}_{\unicode[STIX]{x1D708}}\sim (u^{\prime 4}Ro_{\unicode[STIX]{x1D700}}^{0.62}\unicode[STIX]{x1D70F}_{nl}^{iso})/\ell _{\bot }^{2}$, where $\ell _{\bot }$ is the integral length scale in the direction normal to the axis of rotation and $\unicode[STIX]{x1D70F}_{nl}^{iso}$ is the nonlinear time scale of the initial homogeneous isotropic field.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvelius, K. 1999 Random forcing of three-dimensional homogeneous turbulence. Phys. Fluids 11 (7), 18801889.CrossRefGoogle Scholar
Baqui, Y. B. & Davidson, P. A. 2015 A phenomenological theory of rotating turbulence. Phys. Fluids 27 (2), 025107.CrossRefGoogle Scholar
Bardina, J., Ferziger, J. H. & Rogallo, R. S. 1985 Effect of rotation on isotropic turbulence: computation and modelling. J. Fluid Mech. 154, 321336.CrossRefGoogle Scholar
Bartello, P., Métais, O. & Lesieur, M. 1994 Coherent structures in rotating three-dimensional turbulence. J. Fluid Mech. 273, 129.CrossRefGoogle Scholar
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Boffetta, G. & Ecke, R. E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44 (1), 427451.CrossRefGoogle Scholar
van Bokhoven, L. J. A., Clercx, H. J. H., van Heijst, G. J. F. & Trieling, R. R. 2009 Experiments on rapidly rotating turbulent flows. Phys. Fluids 21 (9), 096601.CrossRefGoogle Scholar
Cambon, C. & Jacquin, L. 1989 Spectral approach to non-isotropic turbulence subjected to rotation. J. Fluid Mech. 202, 295295.CrossRefGoogle Scholar
Cardesa, J. I., Vela-Martín, A. & Jiménez, J. 2017 The turbulent cascade in five dimensions. Science 357 (6353), 782784.CrossRefGoogle ScholarPubMed
Dallas, V., Fauve, S. & Alexakis, A. 2015 Statistical equilibria of large scales in dissipative hydrodynamic turbulence. Phys. Rev. Lett. 115 (20), 204501.CrossRefGoogle ScholarPubMed
Delache, A., Cambon, C. & Godeferd, F. 2014 Scale by scale anisotropy in freely decaying rotating turbulence. Phys. Fluids 26, 025104.CrossRefGoogle Scholar
Deusebio, E., Boffetta, G., Lindborg, E. & Musacchio, S. 2014 Dimensional transition in rotating turbulence. Phys. Rev. E 90 (2), 023005.Google ScholarPubMed
Galtier, S. 2003 Weak inertial-wave turbulence theory. Phys. Rev. E 68 (1), 015301(R).Google ScholarPubMed
Godeferd, F. S. & Moisy, F. 2015 Structure and dynamics of rotating turbulence: a review of recent experimental and numerical results. Appl. Mech. Rev. 67 (3), 030802.CrossRefGoogle Scholar
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Hopfinger, E. J., Browand, F. K. & Gagne, Y. 1982 Turbulence and waves in a rotating tank. J. Fluid Mech. 125, 505534.CrossRefGoogle Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Proceedings of the Summer Program (Center for Turbulence Research), pp. 193208. Center for Turbulence Research.Google Scholar
Ibbetson, A. & Tritton, D. J. 1975 Experiments on turbulence in a rotating fluid. J. Fluid Mech. 68, 639672.CrossRefGoogle Scholar
Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41 (1), 165180.CrossRefGoogle Scholar
Jacquin, L., Leuchter, O., Cambon, C. & Mathieu, J. 1990 Homogeneous turbulence in the presence of rotation. J. Fluid Mech. 220, 152.CrossRefGoogle Scholar
Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K. & Uno, A. 2003 Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15 (2), L21L24.CrossRefGoogle Scholar
Kraichnan, R. H. 1965 Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8 (7), 13851387.CrossRefGoogle Scholar
Matthaeus, W. H. & Zhou, Y. 1989 Extended inertial range phenomenology of magnetohydrodynamic turbulence. Phys. Fluids B 1 (9), 19291931.CrossRefGoogle Scholar
Mininni, P. D., Alexakis, A. & Pouquet, A. 2009 Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers. Phys. Fluids 21 (1), 015108.CrossRefGoogle Scholar
Mininni, P. D., Rosenberg, D. & Pouquet, A. 2012 Isotropization at small scales of rotating helically driven turbulence. J. Fluid Mech. 699, 263279.CrossRefGoogle Scholar
Moisy, F., Morize, C., Rabaud, M. & Sommeria, J. 2011 Decay laws, anisotropy and cyclone–anticyclone asymmetry in decaying rotating turbulence. J. Fluid Mech. 666, 535.CrossRefGoogle Scholar
Morinishi, Y., Nakabayashi, K. & Ren, S. Q. 2001 New DNS algorithm for rotating homogeneous decaying turbulence. Intl J. Heat Fluid Flow 22 (1), 3038.CrossRefGoogle Scholar
Nazarenko, S. V. & Schekochihin, A. A. 2011 Critical balance in magnetohydrodynamic, rotating and stratified turbulence: towards a universal scaling conjecture. J. Fluid Mech. 677, 134153.CrossRefGoogle Scholar
Pekurovsky, D. 2012 P3DFFT: a framework for parallel computations of Fourier transforms in three dimensions. SIAM J. Sci. Comput. 34 (4), C192C209.CrossRefGoogle Scholar
Pestana, T. & Hickel, S.2019a Accompanying videos for the article: Rossby-number effects on columnar eddy formation and the energy dissipation law in homogeneous rotating turbulence. 4TU.Centre for Research Data, https://doi.org/10.4121/uuid:324788e3-a64f-4786-9ef9-f97d70a29064.CrossRefGoogle Scholar
Pestana, T. & Hickel, S. 2019b Regime transition in the energy cascade of rotating turbulence. Phys. Rev. E 99 (5), 053103.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Rogallo, R. S.1977 An ILLIAC program for the numerical simulation of homogeneous incompressible turbulence. NASA Tech. Mem. 73.Google Scholar
Seshasayanan, K. & Alexakis, A. 2018 Condensates in rotating turbulent flows. J. Fluid Mech. 841, 434462.CrossRefGoogle Scholar
Smith, L. M., Chasnov, J. R. & Waleffe, F. 1996 Crossover from two- to three-dimensional turbulence. Phys. Rev. Lett. 77 (12), 24672470.CrossRefGoogle ScholarPubMed
Staplehurst, P. J., Davidson, P. A. & Dalziel, S. B. 2008 Structure formation in homogeneous freely decaying rotating turbulence. J. Fluid Mech. 598, 81105.CrossRefGoogle Scholar
Tang, S. L., Antonia, R. A., Djenidi, L., Danaila, L. & Zhou, Y. 2018 Reappraisal of the velocity derivative flatness factor in various turbulent flows. J. Fluid Mech. 847, 244265.CrossRefGoogle Scholar
Valente, P. C. & Dallas, V. 2017 Spectral imbalance in the inertial range dynamics of decaying rotating turbulence. Phys. Rev. E 95, 023114.Google ScholarPubMed
Van Atta, C. W. & Antonia, R. A. 1980 Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives. Phys. Fluids 23 (2), 252257.CrossRefGoogle Scholar
Yeung, P. K. & Zhou, Y. 1998 Numerical study of rotating turbulence with external forcing. Phys. Fluids 10 (11), 28952909.CrossRefGoogle Scholar
Yoshimatsu, K., Midorikawa, M. & Kaneda, Y. 2011 Columnar eddy formation in freely decaying homogeneous rotating turbulence. J. Fluid Mech. 677, 154178.CrossRefGoogle Scholar
Zeman, O. 1994 A note on the spectra and decay of rotating homogeneous turbulence. Phys. Fluids 6 (10), 32213223.CrossRefGoogle Scholar
Zhou, Y. 1995 A phenomenological treatment of rotating turbulence. Phys. Fluids 7 (8), 20922094.CrossRefGoogle Scholar