Published online by Cambridge University Press: 20 April 2006
In this paper we apply a formalism introduced in a previous paper to write down a self-consistent set of equations for the functions that describe the near-equilibrium time behaviour of random oceanic internal waves. These equations are based on the direct-interaction approximation. The self-consistent equations are solved numerically (using the Garrett-Munk spectrum as input) and the results are compared to parameters obtained in the weak-interaction approximation (WIA). The formalism points out that an extra parameter that is implicitly vanishingly small in the WIA has a significant effect on decay rates when computed self-consistently. We end by mentioning possible future self-consistent calculations that would improve upon our own.