Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T01:33:49.628Z Has data issue: false hasContentIssue false

Self-similar solutions of unsteady ablation flows in inertial confinement fusion

Published online by Cambridge University Press:  30 April 2008

C. BOUDESOCQUE-DUBOIS
Affiliation:
CEA/Bruyères-le-Châtel, 91297 Arpajon Cedex, France
S. GAUTHIER
Affiliation:
CEA/Bruyères-le-Châtel, 91297 Arpajon Cedex, France
J.-M. CLARISSE
Affiliation:
CEA/Bruyères-le-Châtel, 91297 Arpajon Cedex, France

Abstract

We exhibit and detail the properties of self-similar solutions for inviscid compressible ablative flows in slab symmetry with nonlinear heat conduction which are relevant to inertial confinement fusion (ICF). These solutions have been found after several contributions over the last four decades. We first derive the set of ODEs – a nonlinear eigenvalue problem – which governs the self-similar solutions by using the invariance of the Euler equations with nonlinear heat conduction under the two-parameter Lie group symmetry. A sub-family which leaves the density invariant is detailed since these solutions may be used to model the ‘early-time’ period of an ICF implosion where a shock wave travels from the front to the rear surface of a target. A chart allowing us to determine the starting point of a numerical solution, knowing the physical boundary conditions, has been built. A physical analysis of these unsteady ablation flows is then provided, the associated dimensionless numbers (Mach, Froude and Péclet numbers) being calculated. Finally, we show that self-similar ablation fronts generated within the framework of the above hypotheses (electron heat conduction, growing heat flux at the boundary, etc.) and for large heat fluxes and not too large pressures at the boundary do not satisfy the low-Mach-number criteria. Indeed both the compressibility and the stratification of the hot-flow region are too large. This is, in particular, the case for self-similar solutions obtained for energies in the range of the future Laser MegaJoule laser facility. Two particular solutions of this latter sub-family have been recently used for studying stability properties of ablation fronts.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abéguilé, F., Boudesocque-Dubois, C., Clarisse, J.-M., Gauthier, S. & Saillard, Y. 2006 Linear perturbation amplification in self-similar ablation flows of inertial confinement fusion. Phys. Rev. Lett. 97 (035002).Google Scholar
Aglitskiy, Y., Velikovich, A. L., Karasik, M., Serlin, V., Pawley, C. J., Schmitt, A. J., Obenschain, S. P., Gardner, A. N. Mostovych, J. H. & Metzler, N. 2002 Direct observation of mass oscillations due to ablative Richtmyer–Meshkov-like instability and feedout in planar plastic targets. Phys. Plasmas 9 (5).Google Scholar
Anisimov, S. I. 1970 Self-similar thermal wave in a two-temperature plasma heated by a laser pulse. Sov. Phys., J. Exp. Theor. Phys. Lett. 12, 287289.Google Scholar
Atzeni, S. & Meyer-ter-Vehn, J. 2004 The Physics of Inertial Fusion. Oxford University Press.Google Scholar
Bajac, J. 1973 Étude d'une classe de solutions des écoulements plan compressibles avec transfert radiatif. Tech. Rep. CEA-R-4482. Commissariat à l'Énergie Atomique.Google Scholar
Barenblatt, G. 1979 Similarity, Self-Similarity and Intermediate Asymptotics. Consultants Bureau, New-York.CrossRefGoogle Scholar
Barrero, A. & Sanmartín, J. R. 1977 Self-similar motion of laser fusion plasma. Absorption in an unbounded plasma. Phys. Fluids 20 (7), 11551163.CrossRefGoogle Scholar
Betti, R., Goncharov, V. N., McCrory, R. L., Sorotokin, P. & Verdon, C. P. 1996 Self-consistent stability analysis of ablation fronts in inertial confinement fusion. Phys. Plasmas 3 (5), 21222128.Google Scholar
Bodner, S. 1974 Rayleigh–Taylor instability and laser-pellet fusion. Phys. Rev. Lett. 33 (13).Google Scholar
Boudesocque-Dubois, C. 2000 Perturbations linéaires d'une solution autosemblable de l'hydrodynamique avec conduction non linéaire. PhD thesis, Université Paris 6.Google Scholar
Boudesocque-Dubois, C. & Clarisse, J.-M. 2007 Traitement numérique des équations de la dynamique des gaz avec conduction non linéaire dans le code de perturbations silex. Tech. Rep. CEA-R-6137. Commissariat à l'Énergie Atomique.Google Scholar
Boudesocque-Dubois, C., Clarisse, J.-M. & Gauthier, S. 2001 Hydrodynamic stability of ablation fronts: linear perturbation of a self-similar solution. In ECLIM: 26th European Conf. on Laser Interaction with Matter (ed. Rohlena, K., Kálal, M. & Šiňor, M.), Proc. SPIE, 4424, 220–223.Google Scholar
Boudesocque-Dubois, C., Gauthier, S., Clarisse, J.-M. & Lombard, V. 2006 Self-similar solutions of unsteady ablation flow. In 33rd EPS Conf. on Plasma Physics, ECA, vol. 301.Google Scholar
Brun, L., Dautray, R., Delobeau, F., Patou, C., Perrot, F., Reisse, J.-M., Sitt, B. & Watteau, J.-P. 1977 Physical models and mathematical simulation of laser-driven implosion and their relations with experiments. In Laser Interaction and Related Plasma Phenomena (ed. Schwarz, H. J. & Hora, H.), vol. 4B, pp. 10591080. Plenum.Google Scholar
Bychkov, V. V., Golberg, S. M. & Liberman, M. A. 1994 Self-consistent model of the Rayleigh–Taylor instability in ablatively accelerated laser plasma. Phys. Plasmas 1 (9), 29762986.Google Scholar
Chu, B.-T. & Kovásznay, L. 1957 Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3, 494514.Google Scholar
Clarisse, J.-M., Boudesocque-Dubois, C., Gauthier, S. & Abéguilé, F. 2006 Linear perturbation amplification in ICF self-similar ablation flows. J. Phys. IV France 133, 111115.CrossRefGoogle Scholar
Clavin, P. & Masse, L. 2004 Instabilities of ablation fronts in inertial confinement fusion: a comparison with flames. Phys. Fluids 11 (2), 690705.Google Scholar
Duderstadt, J. & Moses, G. 1982 Inertial Confinement Fusion. Wiley-Interscience.Google Scholar
Fortin, X. & Canaud, B. 2000 Direct drive laser fusion calculations at cea. In IFSA'99-Inertial Fusion Sciences and Applications, Bordeaux (ed. Labaune, Ch., Hogan, W. J. & Tanaka, K. A.), pp. 102105. Elsevier.Google Scholar
Fröhlich, J. & Gauthier, S. 1993 Numerical investigations from compressible to isobaric Rayleigh–Bénard convection in two dimensions. Eur. J. Mech. B/Fluids 12, 141159.Google Scholar
Gauthier, S. 1988 A spectral collocation method for two-dimensional compressible convection. J. Comput. Phys. 75, 217235.CrossRefGoogle Scholar
Gauthier, S., Le Creurer, B., Abéguilé, F., Boudesocque-Dubois, C. & Clarisse, J.-M. 2005 A self-adaptative domain decomposition method with Chebyshev method. Intl J. Pure Appl. Maths 24, 553577.Google Scholar
Germain, P. & Muller, P. 1994 Introduction à la Mécanique des Milieux Continus, 2nd edn. Masson, Paris.Google Scholar
Goncharov, V. N. 1999 Theory of the ablative Richtmyer–Meshkov instability. Phys. Rev. Lett. 82, 20912094.CrossRefGoogle Scholar
Goncharov, V. N., Betti, R., McCrory, R. L., Sorotokin, P. & Verdon, C. P. 1996 Self-consistent stability analysis of ablation fronts with large Froude numbers. Phys. Plasmas 4, 14021414.CrossRefGoogle Scholar
Kull, H. J. 1989 Incompressible description of Rayleigh–Taylor instabilities in laser-ablated plasmas. Phys. Fluids B 1 (1), 170182.Google Scholar
Kull, H. J. & Anisimov, S. I. 1986 Ablative stabilization in the incompressible Rayleigh–Taylor instability. Phys. Fluids 7 (29), 20672075.Google Scholar
Lafay, M.-A., Le Creurer, B. & Gauthier, S. 2007 Compressibility effects on the Rayleigh–Taylor instability growth between miscible fluids. Europhys. Lett. 79, 64002.CrossRefGoogle Scholar
Landau, L. D. & Lifchitz, E. M. 1987 Fluid Mechanics. Pergamon.Google Scholar
Le Métayer, O. & Saurel, R. 2006 Compressible exact solutions for one-dimensional laser ablation fronts. J. Fluid Mech. 561, 465475.Google Scholar
Lombard, V., Boudesocque-Dubois, C., Clarisse, J.-M. & Gauthier, S. 2007 Kovásznay modes in stability of self-similar ablation flows of ICF. In 34th EPS Conf. on Plasma Physics, ECA, vol. 31F.Google Scholar
Majda, A. & Sethian, J. 1985 The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Technol. 42, 185205.CrossRefGoogle Scholar
Manheimer, W. & Colombant, D. 1982 Steady-state planar ablative flow. Phys. Fluids 25 (9).Google Scholar
Marshak, R. 1958 Effect of radiation on shock wave behavior. Phys. Fluids 1 (1), 2429.CrossRefGoogle Scholar
Moran, M. J. & Gaggioli, R. A. 1968 Reduction of the number of variables in systems of partial differential equations, with auxiliary conditions. SIAM J. Appl. Maths 16, 202215.Google Scholar
Murakami, M., Sakaiya, T. & Sanz, J. 2007 Self-similar ablative flow of nonstationary accelerating foil due to nonlinear heat conduction. Phys. Plasmas 14, 022707.Google Scholar
Nuckolls, J., Wood, L., Thiessen, A. & Zimmerman, G. 1972 Laser compression of matter to super-high densities: thermonuclear (CTR) applications. Nature 239.Google Scholar
Orszag, S. A. 1980 Spectral methods for problems in complex geometries. J. Comput. Phys. 37, 7092.Google Scholar
Pakula, R. & Sigel, R. 1985 Self-similar expansion of dense matter due to heat transfer by nonlinear conduction. Phys. Fluids 28 (1), 232–44.Google Scholar
Paolucci, S. 1982 On the filtering of sound from the Navier–Stokes. SAND82-8257. Sandia National Laboratories.Google Scholar
Peyret, R. 2002 Spectral Methods for Incompressible Viscous Flow. Springer.Google Scholar
Piriz, A. R., Sanz, J. & Ibañez, F. 1997 Rayleigh–Taylor instability of steady ablation fronts: the discontinuity model revisited. Phys. Plasmas 4 (4), 11171126.Google Scholar
Reinicke, P. & Meyer-ter-Vehn, J. 1991 The point explosion with heat conduction. Phys. Fluids A 3, 18071818.Google Scholar
Renaud, F. & Gauthier, S. 1997 A dynamical pseudo-spectral domain decomposition technique: application to viscous compressible flows. J. Comput. Phys. 131, 89108.Google Scholar
Sanmartín, J. R. & Barrero, A. 1978 a Self-similar motion of laser half-space plasmas. I. Deflagration regime. Phys. Fluids 21 (11), 19571966.CrossRefGoogle Scholar
Sanmartín, J. R. & Barrero, A. 1978 b Self-similar motion of laser half-space plasmas. II. Thermal wave and intermediate regimes. Phys. Fluids 21 (11), 19671971.CrossRefGoogle Scholar
Sanz, J., Piriz, A. R. & Tomasel, F. G. 1992 Self-similar model for tamped ablation driven by thermal radiation. Phys. Fluids B 4 (3), 683692.Google Scholar
Thompson, P. A. 1988 Compressible-Fluid Dynamics. Advanced Engineering.Google Scholar
Velikovich, A. L., Dahlburg, J. P., Gardner, J. H. & Taylor, R. J. 1998 Saturation of perturbation growth in ablatively driven planar laser targets. Phys. Plasmas 5 (5).CrossRefGoogle Scholar
Velikovich, A. L., Dahlburg, J. P., Schmitt, A. J., Gardner, J. H., Phillips, L., Cochran, F. L., Chong, Y. K., Dimonte, G. & Metzler, N. 2000 Richtmyer–Meshkov-like instabilities and early-time perturbation growth in laser targets and Z-pinch loads. Phys. Plasmas 7 (2).Google Scholar
Zel'dovich, Y. & Raizer, Y. 1967 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Academic.Google Scholar