Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T06:27:05.409Z Has data issue: false hasContentIssue false

Shaping of melting and dissolving solids under natural convection

Published online by Cambridge University Press:  13 August 2020

Samuel S. Pegler*
Affiliation:
School of Mathematics, University of Leeds, LeedsLS2 9JT, UK
Megan S. Davies Wykes
Affiliation:
Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, UK
*
Email address for correspondence: sam.s.pegler@gmail.com

Abstract

How quickly does an ice cube melt or a lump of sugar dissolve? We address the open problem of the shapes of solids left to melt or dissolve in an ambient fluid driven by stable natural convection. The theory forms a convective form of a Stefan problem in which the evolution is controlled by a two-way coupling between the shape of the body and stable convection along its surface. We develop a new model describing the evolution of such bodies in two-dimensional or axisymmetric geometries and analyse it using a combination of numerical and analytical methods. Different initial conditions are found to lead to different fundamental shapes and descent rates. For the cases of initially linear surfaces (wedges or cones), the model admits similarity solutions in which the tip descends from its initial position as $t^{4/5}$, where t is time. It is determined that the evolving shape always forms a parabola sufficiently near the tip. For steeply inclined bodies, we establish a general two-tiered asymptotic structure comprising a broad $4/3$-power intermediate near-tip region connected to a deeper parabolic region at the finest scale. The model results apply universally for any given relationship between density, viscosity, diffusivity and concentration, including two-component convection. New laboratory experiments involving the dissolution of cones of sugar candy in water are found to collapse systematically onto our theoretically predicted shapes and descent rates with no adjustable parameters.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acrivos, A. 1960 a Mass transfer in laminar boundary-layer flows with finite interfacial velocities. AIChE J. 6 (3), 410414.CrossRefGoogle Scholar
Acrivos, A. 1960 b A theoretical analysis of laminar natural convection heat transfer to non-Newtonian fluids. AIChE J. 6 (4), 584590.CrossRefGoogle Scholar
Acrivos, A. 1962 The asymptotic form of the laminar boundary-layer mass-transfer rate for large interfacial velocities. J. Fluid Mech. 12 (3), 337357.CrossRefGoogle Scholar
Bejan, A. 2013 Convection Heat Transfer, 4th edn.John Wiley & Sons, Ltd.CrossRefGoogle Scholar
Camporeale, C. & Ridolfi, L. 2012 Hydrodynamic-driven stability analysis of morphological patterns on stalactites and implications for cave paleoflow reconstructions. Phys. Rev. Lett. 108 (23), 238501.CrossRefGoogle ScholarPubMed
Carey, V. P. & Gebhart, B. 1982 Transport near a vertical ice surface melting in saline water: experiments at low salinities. J. Fluid Mech. 117, 403423.CrossRefGoogle Scholar
Carey, V. P., Gebhart, B. & Mollendorf, J. C. 1980 Buoyancy force reversals in vertical natural convection flows in cold water. J. Fluid Mech. 97 (2), 279297.CrossRefGoogle Scholar
Dallaston, M. C., Hewitt, I. J. & Wells, A. J. 2015 Channelization of plumes beneath ice shelves. J. Fluid Mech. 785, 109134.CrossRefGoogle Scholar
Davies Wykes, M. S., Huang, J. M., Hajjar, G. A. & Ristroph, L. 2018 Self-sculpting of a dissolvable body due to gravitational convection. Phys. Rev. Fluids 3 (4), 043801.CrossRefGoogle Scholar
Dutrieux, P., Stewart, C., Jenkins, A., Nicholls, K. W., Corr, H. F. J., Rignot, E. & Steffen, K. 2014 Basal terraces on melting ice shelves. Geophys. Res. Lett. 41 (15), 55065513.CrossRefGoogle Scholar
Epstein, M. & Cheung, F. B. 1983 Complex freezing–melting interfaces in fluid flow. Annu. Rev. Fluid Mech. 15 (1), 293319.CrossRefGoogle Scholar
FitzMaurice, A., Cenedese, C. & Straneo, F. 2017 Nonlinear response of iceberg side melting to ocean currents. Geophys. Res. Lett. 44 (11), 56375644.CrossRefGoogle Scholar
Hao, Y. L. & Tao, Y.-X. 2001 Melting of a solid sphere under forced and mixed convection: flow characteristics. Trans. ASME: J. Heat Transfer 123 (5), 937950.CrossRefGoogle Scholar
Hao, Y. L. & Tao, Y. -X. 2002 Heat transfer characteristics of melting ice spheres under forced and mixed convection. Trans. ASME: J. Heat Transfer 124 (5), 891903.CrossRefGoogle Scholar
Haynes, W. M. 2016 CRC Handbook of Chemistry and Physics, 97th edn.CRC Press.CrossRefGoogle Scholar
Hewitt, I. J. 2020 Subglacial plumes. Annu. Rev. Fluid Mech. 52 (1), 145169.CrossRefGoogle Scholar
Huang, J. M., Moore, M. N. J. & Ristroph, L. 2015 Shape dynamics and scaling laws for a body dissolving in fluid flow. J. Fluid Mech. 765, R3.CrossRefGoogle Scholar
Huppert, H. E. & Turner, J. S. 1978 On melting icebergs. Nature 271 (5640), 4648.CrossRefGoogle Scholar
Huppert, H. E. & Turner, J. S. 1980 Ice blocks melting into a salinity gradient. J. Fluid Mech. 100 (2), 367384.CrossRefGoogle Scholar
Ivantsov, G. P. 1985 Temperature field around a spherical, cylindrical, and needle-shaped crystal, growing in a pre-cooled melt. tfas 58, 567569.Google Scholar
Jaeger, J. C. & Carslaw, H. S. 1959 Conduction of Heat in Solids. Clarendon Press.Google Scholar
Josberger, E. G. & Martin, S. 1981 A laboratory and theoretical study of the boundary layer adjacent to a vertical melting ice wall in salt water. J. Fluid Mech. 111, 439473.CrossRefGoogle Scholar
Kerr, R. C. 1994 Dissolving driven by vigorous compositional convection. J. Fluid Mech. 280, 287302.CrossRefGoogle Scholar
Kerr, R. C. & McConnochie, C. D. 2015 Dissolution of a vertical solid surface by turbulent compositional convection. J. Fluid Mech. 765, 211228.CrossRefGoogle Scholar
Kuiken, H. K. 1968 An asymptotic solution for large Prandtl number free convection. J. Engng Maths 2 (4), 355371.CrossRefGoogle Scholar
Makkonen, L. 1988 A model of icicle growth. J. Glaciol. 34 (116), 6470.CrossRefGoogle Scholar
Mangler, W. 1948 Zusammenhang zwischen ebenen und rotationssymmetrischen grenzschichten in kompressiblen flüssigkeiten. Z. Angew. Math. Mech. 28 (4), 97103.CrossRefGoogle Scholar
Mathlouthi, M. & Reiser, P. 2012 Sucrose: Properties and Applications. Springer Science & Business Media. google-Books-ID: 0VzmBwAAQBAJ.Google Scholar
McConnochie, C. D. & Kerr, R. C. 2018 Dissolution of a sloping solid surface by turbulent compositional convection. J. Fluid Mech. 846, 563577.CrossRefGoogle Scholar
Mcleod, P., Riley, D. S. & Sparks, R. S. J. 1996 Melting of a sphere in hot fluid. J. Fluid Mech. 327, 393409.CrossRefGoogle Scholar
McPhee, M. 2008 Air-Ice-Ocean Interaction. Springer.CrossRefGoogle Scholar
Meakin, P. & Jamtveit, B. 2010 Geological pattern formation by growth and dissolution in aqueous systems. Proc. R. Soc. Lond. A 466 (2115), 659694.CrossRefGoogle Scholar
Merk, H. J. & Prins, J. A. 1953 Thermal convection in laminary boundary layers. I. Appl. Sci. Res. 4 (1), 1124.CrossRefGoogle Scholar
Mohos, F. Á 2010 Confectionery and Chocolate Engineering: Principles and Applications. Blackwell Pub.CrossRefGoogle Scholar
Moore, M. N. J. 2017 Riemann–Hilbert problems for the shapes formed by bodies dissolving, melting, and eroding in fluid flows. Commun. Pure Appl. Maths 70 (9), 18101831.CrossRefGoogle Scholar
Moore, M. N. J., Ristroph, L., Childress, S., Zhang, J. & Shelley, M. J. 2013 Self-similar evolution of a body eroding in a fluid flow. Phys. Fluids 25 (11), 116602.CrossRefGoogle Scholar
Morgan, G. W. & Warner, W. H. 1956 On heat transfer in laminar boundary layers at high Prandtl number. J. Aeronaut. Sci. 23 (10), 937948.CrossRefGoogle Scholar
Nakouzi, E., Goldstein, R. E. & Steinbock, O. 2015 Do dissolving objects converge to a universal shape? Langmuir 31 (14), 41454150.CrossRefGoogle ScholarPubMed
Nash, G. E. & Glicksman, M. E. 1979 Steady-state dendritic growth. In Growth of Crystals (ed. A. A Chernov), vol. 11, pp. 284–289. Springer.CrossRefGoogle Scholar
Neufeld, J. A., Goldstein, R. E. & Worster, M. G. 2010 On the mechanisms of icicle evolution. J. Fluid Mech. 647, 287308.CrossRefGoogle Scholar
Ostrach, S. 1953 An analysis of laminar free-convection flow and heat transfer about a flat plate paralled to the direction of the generating body force. Tech. Rep. 1111. NASA.Google Scholar
Pegler, S. S. & Davies Wykes, M. S. 2021 The convective Stefan problem: transitional shapes under natural convection. J. Fluid Mech. Under review.Google Scholar
Pegler, S. S., Huppert, H. E. & Neufeld, J. A. 2013 Topographic controls on gravity currents in porous media. J. Fluid Mech. 734, 317337.CrossRefGoogle Scholar
Pegler, S. S., Huppert, H. E. & Neufeld, J. A. 2016 Stratified gravity currents in porous media. J. Fluid Mech. 791, 329357.CrossRefGoogle Scholar
Price, H. C., Mattsson, J. & Murray, B. J. 2016 Sucrose diffusion in aqueous solution. Phys. Chem. Chem. Phys. 18 (28), 1920719216.CrossRefGoogle ScholarPubMed
Quintas, M., Brandão, T., Silva, C. & Cunha, R. 2006 Rheology of supersaturated sucrose solutions. J. Food Engng 77 (4), 844852.CrossRefGoogle Scholar
Ristroph, L. 2018 Sculpting with flow. J. Fluid Mech. 838, 14.CrossRefGoogle Scholar
Ristroph, L., Moore, M. N. J., Childress, S., Shelley, M. J. & Zhang, J. 2012 Sculpting of an erodible body by flowing water. Proc. Natl Acad. Sci. 109 (48), 1960619609.CrossRefGoogle ScholarPubMed
Schlichting, H. & Gersten, K. 2017 Boundary-Layer Theory, 9th edn.Springer.CrossRefGoogle Scholar
Short, M. B., Baygents, J. C. & Goldstein, R. E. 2006 A free-boundary theory for the shape of the ideal dripping icicle. Phys. Fluids 18 (8), 083101.CrossRefGoogle Scholar
Slater, D. A., Nienow, P. W., Goldberg, D. N., Cowton, T. R. & Sole, A. J. 2017 A model for tidewater glacier undercutting by submarine melting. Geophys. Res. Lett. 44 (5), 23602368.CrossRefGoogle Scholar
Stefan, J. 1891 Ueber die theorie der eisbildung, insbesondere über die eisbildung im polarmeere. Ann. Phys. 278 (2), 269286.CrossRefGoogle Scholar
Stewartson, K. 1958 On the free convection from a horizontal plate. Z. Angew. Math. Phys. 9 (3), 276282.CrossRefGoogle Scholar
Sullivan, T. S., Liu, Y. & Ecke, R. E. 1996 Turbulent solutal convection and surface patterning in solid dissolution. Phys. Rev. E 54 (1), 486495.CrossRefGoogle ScholarPubMed
Vanier, C. R. & Tien, C. 1970 Free convection melting of ice spheres. AIChE J. 16 (1), 7682.CrossRefGoogle Scholar
Wells, A. J. & Worster, M. G. 2011 Melting and dissolving of a vertical solid surface with laminar compositional convection. J. Fluid Mech. 687, 118140.CrossRefGoogle Scholar

Pegler and Davies Wykes supplementary movie 1

Real-time shadow graph of our experiment, illustrating the transition from laminar to turbulent flow.
Download Pegler and Davies Wykes supplementary movie 1(Video)
Video 6 MB

Pegler and Davies Wykes supplementary movie 2

The evolution of experiment A.
Download Pegler and Davies Wykes supplementary movie 2(Video)
Video 5.8 MB

Pegler and Davies Wykes supplementary movie 3

The evolution of experiment B.
Download Pegler and Davies Wykes supplementary movie 3(Video)
Video 2.9 MB

Pegler and Davies Wykes supplementary movie 4

The evolution of experiment C.
Download Pegler and Davies Wykes supplementary movie 4(Video)
Video 2.9 MB

Pegler and Davies Wykes supplementary movie 5

The evolution of experiment D.
Download Pegler and Davies Wykes supplementary movie 5(Video)
Video 2 MB