Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T06:59:41.388Z Has data issue: false hasContentIssue false

Shock transformation and hysteresis in underexpanded confined jets

Published online by Cambridge University Press:  21 June 2017

R. Arun Kumar
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu-600036, India
G. Rajesh*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu-600036, India
*
Email address for correspondence: rajesh@ae.iitm.ac.in

Abstract

This study investigates the shock transformation in an underexpanded jet in a confined duct when the jet total pressure is increased. Experimental study reveals that the Mach reflection (MR) in the fully underexpanded jet transforms to a regular reflection (RR) at a certain jet total pressure. It is observed that neither the incident shock angle nor the upstream Mach number varies during the MR–RR shock transformation. This is in contradiction to the classical MR–RR transformations in internal flow over wedges and in underexpanded open jets. This transformation is found to be a total pressure variation induced transformation, which is a new kind of shock transformation. The present study also reveals that the critical jet total pressures for MR–RR and RR–MR transformations are not the same when the primary pressure is increasing and decreasing, suggesting a hysteresis in the shock transformations.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulateef, J. M., Sopian, K. M., Alghoul, M. A. & Sulaiman, M. Y. 2009 Review on solar-driven ejector refrigeration technologies. Renewable Sustainable Energy Reviews 13 (6), 13381349.Google Scholar
Adamson, T. C. Jr. 1959 On the structure of jets from highly underexpanded nozzles into still air. J. Aero. Sci. 25 (1), 1624.Google Scholar
Annamalai, K., Visvanathan, K., Sriramulu, V. & Bhaskaran, K. A. 1998 Evaluation of the performance of supersonic exhaust diffuser using scaled down models. Exp. Therm. Fluid Sci. 17 (3), 217229.CrossRefGoogle Scholar
Arun, K. R. & Rajesh, G. 2016 Flow transients in un-started and started modes of vacuum ejector operation. Phys. Fluids 28 (5), 056105.Google Scholar
Azevedo, D. J.1989 Analytic prediction of shock patterns in a high-speed, wedge-bounded duct. PhD thesis, State University of New York.Google Scholar
Ben-Dor, G. 2007 Shock Wave Reflection Phenomena, vol. 2. Springer.Google Scholar
Ben-Dor, G., Elperin, T., Li, H. & Vasiliev, E. 1999 The influence of the downstream pressure on the shock wave reflection phenomenon in steady flows. J. Fluid Mech. 386, 213232.Google Scholar
Chpoun, A. & Ben-Dor, G. 1995a Numerical confirmation of the hysteresis phenomenon in the regular to the Mach reflection transition in steady flows. Shock Waves 5 (4), 199203.Google Scholar
Chpoun, A., Passerel, D., Li, H. & Ben-Dor, G. 1995b Reconsideration of oblique shock wave reflections in steady flows. Part 1. Experimental investigation. J. Fluid Mech. 301, 1935.CrossRefGoogle Scholar
Chunnanond, K. & Aphornratana, S. 2004 Ejectors: applications in refrigeration technology. Renewable Sustainable Energy Reviews 8 (2), 129155.Google Scholar
Daniel, D. T.2010 A general simulation of an air ejector diffuser system. MS thesis, University of Tennessee.Google Scholar
German, R. C. & Bauer, R. C.1961 Effects of diffuser length on the performance of ejectors without induced flow. Tech. Rep. DTIC Document.Google Scholar
German, R. C., Panesci, J. H. & Clark, H. K.1963 Zero secondary flow ejector-diffuser performance using annular nozzles. Tech. Rep. DTIC Document.Google Scholar
Gribben, B. J., Badcock, K. J. & Richards, B. E. 2000 Numerical study of shock-reflection hysteresis in an underexpanded jet. AIAA J. 38 (2), 275283.Google Scholar
Hadjadj, A., Kudryavtsev, A. N. & Ivanov, M. S. 2004 Numerical investigation of shock-reflection phenomena in overexpanded supersonic jets. AIAA J. 42 (3), 570577.Google Scholar
Henderson, L. F. & Lozzi, A. 1975 Experiments on transition of Mach reflection. J. Fluid Mech. 68 (01), 139155.Google Scholar
Hornung, H. G. & Kychakoff, G. 1977 Transition from regular to Mach reflection of shock waves in chemically relaxing flow. In Proceedings of the 11th International Symposium Shock Tubes and Waves, vol. 218, pp. 296302. Springer.Google Scholar
Hornung, H. G., Oertel, H. & Sandeman, R. J. 1979 Transition to Mach reflexion of shock waves in steady and pseudosteady flow with and without relaxation. J. Fluid Mech. 90 (3), 541560.CrossRefGoogle Scholar
Hornung, H. G. & Robinson, M. L. 1982 Transition from regular to Mach reflection of shock waves. Part 2. The steady-flow criterion. J. Fluid Mech. 123, 155164.Google Scholar
Hu, Z. M., Myong, R. S., Kim, M. S. & Cho, T. H. 2009 Downstream flow condition effects on the RR–MR transition of asymmetric shock waves in steady flows. J. Fluid Mech. 620, 4362.Google Scholar
Huang, B. J., Jiang, C. B. & Hu, F. L. 1985 Ejector performance characteristics and design analysis of jet refrigeration system. Trans. ASME: J. Engng Gas Turbines Power 107 (3), 792802.Google Scholar
Ivanov, M. S., Ben-Dor, G., Elperin, T., Kudryavtsev, A. N. & Khotyanovsky, D. V. 2001 Flow-Mach-number-variation-induced hysteresis in steady shock wave reflections. AIAA J. 39 (5), 972974.Google Scholar
Ivanov, M. S., Gimelshein, S. F. & Beylich, A. E. 1995 Hysteresis effect in stationary reflection of shock waves. Phys. Fluids 7 (4), 685687.CrossRefGoogle Scholar
Ivanov, M. S., Gimelshein, S. F. & Markelov, G. N. 1998 Statistical simulation of the transition between regular and Mach reflection in steady flows. Comput. Maths Applics. 35 (1), 113125.Google Scholar
Ivanov, M. S., Gimelshein, S. F., Markelov, G. N. & Beylich, A. E. 1996 Numerical investigation of shock-wave reflection problems in steady flows. In Proceedings of the 20th International Symposium Shock Waves, vol. 1, pp. 471476. World Scientific.Google Scholar
Ivanov, M. S., Kudryavtsev, A. N., Nikiforov, S. B., Khotyanovsky, D. V. & Pavlov, A. A. 2003 Experiments on shock wave reflection transition and hysteresis in low-noise wind tunnel. Phys. Fluids 15 (6), 18071810.Google Scholar
Khotyanovsky, D. V., Kudryavtsev, A. N. & Ivanov, M. S. 1999 Numerical study of transition between steady regular and Mach reflection caused by free-stream perturbations. In Proceedings of the 22nd International Symposium on Shock Waves, pp. 12611266. University of Southampton.Google Scholar
Kumaran, R. M., Kumaresan, V. P., Sundararajan, T. & Manohar, R. D. 2009 Optimization of second throat ejectors for high-altitude test facility. J. Propul. Power 25 (3), 697706.Google Scholar
Li, H., Schotz, M. & Ben-Dor, G. 1996 Wave configuration of Mach reflection in steady flows: analytical solution and dependence on downstream influences. In International Symposium on Shock Waves, vol. 1, pp. 393398. World Scientific.Google Scholar
Li, S. G., Gao, B. & Wu, Z. N. 2011 Time history of regular to Mach reflection transition in steady supersonic flow. J. Fluid Mech. 682, 160184.CrossRefGoogle Scholar
Lijo, V., Kim, H. D., Rajesh, G. & Setoguchi, T. 2010 Numerical simulation of transient flows in a vacuum ejector-diffuser system. Proc. Inst. Mech. Engrs G 224 (7), 777786.Google Scholar
Matsuo, S., Setoguchi, T., Nagao, J., Md. Alam, M. A. & Kim, H. D. 2011 Experimental study on hysteresis phenomena of shock wave structure in an over-expanded axisymmetric jet. J. Mech. Sci. Technol. 25 (10), 25592565.Google Scholar
Mittal, A., Rajesh, G., Lijo, V. & Kim, H. D. 2014 Starting transients in vacuum ejector-diffuser system. J. Propul. Power 30 (5), 12131223.Google Scholar
Mouton, C. A.2006 Transition between regular reflection and Mach reflection in the dual-solution domain. PhD thesis, California Institute of Technology.Google Scholar
Naidoo, K. & Skews, B. W. 2014 Dynamic transition from Mach to regular reflection of shock waves in a steady flow. J. Fluid Mech. 750, 385400.Google Scholar
von Neumann, J.1945 Refraction, intersection and reflection of shock waves. NAVORD Rep. 203245.Google Scholar
Park, B. H., Lee, J. H. & Yoon, W. 2008 Studies on the starting transient of a straight cylindrical supersonic exhaust diffuser: effects of diffuser length and pre-evacuation state. Intl J. Heat Fluid Flow 29 (5), 13691379.CrossRefGoogle Scholar
Paxson, D. E. & Dougherty, K. T. 2005 Ejector enhanced pulsejet based pressure gain combustors: an old idea with a new twist. In National Aeronautics and Space Administration. Glenn Research Center.Google Scholar
Shimshi, E., Ben-Dor, G. & Levy, A. 2009 Viscous simulation of shock-reflection hysteresis in overexpanded planar nozzles. J. Fluid Mech. 635, 189206.Google Scholar
Sudani, N., Sato, M., Noda, J., Karasawa, T., Tate, A. & Watanabe, M. 2002 Irregular effects on the transition from regular to Mach reflection of shock waves in wind tunnel flows. J. Fluid Mech. 459, 167185.Google Scholar
Yao, Y., Li, S. G. & Wu, Z. N. 2013 Shock reflection in the presence of an upstream expansion wave and a downstream shock wave. J. Fluid Mech. 735, 6190.Google Scholar