Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T17:05:53.216Z Has data issue: false hasContentIssue false

Shore protection by oblique seabed bars

Published online by Cambridge University Press:  21 February 2017

Louis-Alexandre Couston
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
Mir Abbas Jalali
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA Department of Astronomy, University of California, Berkeley, CA 94720, USA
Mohammad-Reza Alam*
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
*
Email address for correspondence: reza.alam@berkeley.edu

Abstract

Shore protection by small seabed bars was once considered possible because seafloor undulations strongly reflect surface waves of twice the wavelength by the so-called Bragg resonance mechanism. The idea, however, proved ‘unreliable’ when it was realized that a patch of longshore seabed bars adjacent to a reflective shore could result in larger waves at the shoreline than for the case of a flat seabed. Here we propose to revamp the Bragg resonance mechanism as a means of coastal protection by considering oblique seabed bars that divert, rather than reflect, shore-normal incident waves to the shore-parallel direction. We show, via multiple-scale analysis supported by direct numerical simulations, that the creation of a large protected wake near the shoreline requires a bi-chromatic patch to deflect the incident waves to the shore-parallel direction. With two superposed sets of oblique seabed bars, the incident wave energy becomes efficiently deflected far to the sides, leaving a wake of decreased wave activity downstream of the patch. We demonstrate that the shore protection efficiency provided by this novel arrangement is not affected by reflection of leaked waves at the shoreline, and that it is relatively robust against small frequency detuning.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alam, M.-R. 2012a Broadband cloaking in stratified seas. Phys. Rev. Lett. 108 (8), 084502.Google Scholar
Alam, M.-R. 2012b Nonlinear analysis of an actuated seafloor-mounted carpet for a high-performance wave energy extraction. Proc. R. Soc. Lond. A 468 (2146), 31533171.Google Scholar
Alam, M.-R., Liu, Y. & Yue, D. K. P. 2009a Bragg resonance of waves in a two-layer fluid propagating over bottom ripples. Part 2. Numerical simulation. J. Fluid Mech. 624, 225253.Google Scholar
Alam, M.-R., Liu, Y. & Yue, D. K. P. 2009b Waves due to an oscillating and translating disturbance in a two-layer density-stratified fluid. J. Engng Maths 65 (2), 179200.Google Scholar
Alam, M.-R., Liu, Y. & Yue, D. K. P. 2010 Oblique sub- and super-harmonic Bragg resonance of surface waves by bottom ripples. J. Fluid Mech. 643, 437447.Google Scholar
Alam, M.-R., Liu, Y. & Yue, D. K. P. 2011 Attenuation of short surface waves by the sea floor via nonlinear sub-harmonic interaction. J. Fluid Mech. 689, 529540.Google Scholar
Athanassoulis, G. A. & Belibassakis, K. A. 1999 A consistent coupled-mode theory for the propagation of small-amplitude water waves over variable bathymetry regions. J. Fluid Mech. 389, 275301.CrossRefGoogle Scholar
Bailard, J. A., DeVries, J. W. & Kirby, J. T. 1992 Considerations in using Bragg reflection for storm erosion protection. J. Waterways Port Coast. Ocean Engng 118 (1), 6274.Google Scholar
Bailard, J. A., DeVries, J. W., Kirby, J. T. & Guza, R. T. 1991 Bragg reflection breakwater: a new shore protection method? In Coastal Engineering Proceedings 1990, pp. 17021715. ASCE.Google Scholar
Belibassakis, K. A., Athanassoulis, G. A. & Gerostathis, T. P. 2001 A coupled-mode model for the refraction–diffraction of linear waves over steep three-dimensional bathymetry. Appl. Ocean Res. 23 (6), 319336.Google Scholar
Burcharth, H. F., Kramer, M., Lamberti, A. & Zanuttigh, B. 2006 Structural stability of detached low crested breakwaters. Coast. Engng 53 (4), 381394.Google Scholar
Couston, L.-A., Guo, Q., Chamanzar, M. & Alam, M.-R. 2015 Fabry–Perot resonance of water waves. Phys. Rev. E 92 (4), 043015.Google Scholar
Dalrymple, R. A., Kirby, J. T. & Hwang, P. A. 1984 Wave diffraction due to areas of energy dissipation. J. Waterways Port Coast. Ocean Engng 110 (1), 6779.Google Scholar
Davies, A. G. 1982 The reflection of wave energy by undulations on the seabed. Dyn. Atmos. Oceans 6 (4), 207232.Google Scholar
Davies, A. G. & Heathershaw, A. D. 1984 Surface-wave propagation over sinusoidally varying topography. J. Fluid Mech. 144, 419443.Google Scholar
Dommermuth, D. G. & Yue, D. K. P. 1987 A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech. 184, 267288.Google Scholar
Dulou, C., Belzons, M. & Rey, V. 2000 Laboratory study of wave bottom interaction in the bar formation on an erodible sloping bed. J. Geophys. Res. 105 (C8), 1974519762.Google Scholar
Elandt, R. B., Shakeri, M. & Alam, M.-R. 2014 Surface gravity-wave lensing. Phys. Rev. E 89 (2), 023012.Google Scholar
Elgar, S., Raubenheimer, B. & Herbers, T. H. C. 2003 Bragg reflection of ocean waves from sandbars. Geophys. Res. Lett. 30 (1), 16.Google Scholar
Emanuel, K. 2005 Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436 (7051), 686688.Google Scholar
Fredholm, I. 1903 Sur une classe d’équations fonctionnelles. Acta Mathematica 27 (1), 365390.Google Scholar
Guazzelli, E., Rey, V. & Belzons, M. 1992 Higher-order Bragg reflection of gravity surface waves by periodic beds. J. Fluid Mech. 245, 301317.Google Scholar
Heathershaw, A. D. 1982 Seabed-wave resonance and sand bar growth. Nature 296 (5855), 343345.Google Scholar
Herbers, T. H. C., Elgar, S. & Guza, R. T. 1999 Directional spreading of waves in the nearshore. J. Geophys. Res.: Oceans 104 (C4), 76837693.Google Scholar
Howard, L. N. & Yu, J. 2007 Normal modes of a rectangular tank with corrugated bottom. J. Fluid Mech. 593, 209234.Google Scholar
Inman, D. L. & Dolan, R. 1989 The outer banks of North Carolina: budget of sediment and inlet dynamics along a migrating barrier system. J. Coast. Res. 5 (2), 193237.Google Scholar
Khan-Mozahedy, A. B. M., Muñoz Perez, J. J., Neves, M. G., Sancho, F. & Cavique, R. 2016 Mechanics of the scouring and sinking of submerged structures in a mobile bed: a physical model study. Coast. Engng 110, 5063.Google Scholar
Kirby, J. T. 1986 A general wave equation for waves over rippled beds. J. Fluid Mech. 162, 171186.Google Scholar
Kirby, J. T. 1993 A note on Bragg scattering of surface waves by sinusoidal bars. Phys. Fluids A 5 (2), 380386.Google Scholar
Kirby, J. T. & Anton, J. P. 1991 Bragg reflection of waves by artificial bars. In Coastal Engineering Proceedings 1990, pp. 757768.Google Scholar
Kramer, M., Zanuttigh, B., Van der Meer, J. W., Vidal, C. & Gironella, F. X. 2005 Laboratory experiments on low-crested breakwaters. Coast. Engng 52 (10), 867885.Google Scholar
Liu, P. L.-F., Yeh, H., Lin, P., Chang, K.-T. & Cho, Y.-S. 1998 Generation and evolution of edge-wave packets. Phys. Fluids 10 (7), 16351657.Google Scholar
Liu, Y. & Yue, D. K. P. 1998 On generalized Bragg scattering of surface waves by bottom ripples. J. Fluid Mech. 356, 297326.Google Scholar
Madsen, P. A., Fuhrman, D. R. & Wang, B. 2006 A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry. Coast. Engng 53 (5), 487504.Google Scholar
Magne, R., Rey, V. & Ardhuin, F. 2005 Measurement of wave scattering by topography in the presence of currents. Phys. Fluids 17 (12), 126601.Google Scholar
Mei, C. C. 1985 Resonant reflection of surface water waves by periodic sandbars. J. Fluid Mech. 152, 315335.Google Scholar
Mei, C. C., Hara, T. & Naciri, M. 1988 Note on Bragg scattering of water waves by parallel bars on the seabed. J. Fluid Mech. 186, 147162.Google Scholar
Mei, C. C., Hara, T. & Yu, J. 2001 Longshore bars and Bragg resonance. In Geomorphological Fluid Mechanics, pp. 500527. Springer.Google Scholar
Mitra, A. & Greenberg, M. D. 1984 Slow interactions of gravity waves and a corrugated sea bed. Trans. ASME J. Appl. Mech. 51 (2), 251255.Google Scholar
Naciri, M. & Mei, C. C. 1988 Bragg scattering of water waves by a doubly periodic seabed. J. Fluid Mech. 192, 5174.Google Scholar
O’Hare, T. J. & Davies, A. G. 1992 A new model for surface wave propagation over undulating topography. Coast. Engng 18 (3–4), 251266.Google Scholar
O’Hare, T. J. & Davies, A. G. 1993 Sand bar evolution beneath partially-standing waves: laboratory experiments and model simulations. Cont. Shelf Res. 13 (11), 11491181.Google Scholar
Pinsker, Z. G. 1978 Dynamical Scattering of X-rays in Crystals, vol. 3. Springer.Google Scholar
Porter, D. & Staziker, D. J. 1995 Extensions of the mild-slope equation. J. Fluid Mech. 300, 367382.Google Scholar
Porter, R. & Porter, D. 2001 Interaction of water waves with three-dimensional periodic topography. J. Fluid Mech. 434, 301335.Google Scholar
Ranasinghe, R. & Turner, I. L. 2006 Shoreline response to submerged structures: a review. Coast. Engng 53 (1), 6579.CrossRefGoogle Scholar
Seo, S. N. 2014 Transfer matrix of linear water wave scattering over a stepwise bottom. Coast. Engng 88, 3342.Google Scholar
Toffoli, A., Gramstad, O., Trulsen, K., Monbaliu, J., Bitner-Gregersen, E. & Onorato, M. 2010 Evolution of weakly nonlinear random directional waves: laboratory experiments and numerical simulations. J. Fluid Mech. 664, 313336.Google Scholar
Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H.-R. 2005 Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309 (5742), 18441846.Google Scholar
Weidman, P. D., Herczynski, A., Yu, J. & Howard, L. N. 2015 Experiments on standing waves in a rectangular tank with a corrugated bed. J. Fluid Mech. 777, 122150.Google Scholar
West, B. J., Brueckner, K. A., Janda, R. S., Milder, D. M. & Milton, R. L. 1987 A new numerical method for surface hydrodynamics. J. Geophys. Res. 92 (C11), 1180311824.Google Scholar
Yu, J. & Howard, L. N. 2012 Exact Floquet theory for waves over arbitrary periodic topographies. J. Fluid Mech. 712, 451470.Google Scholar
Yu, J. & Mei, C. C. 2000 Do longshore bars shelter the shore? J. Fluid Mech. 404, 251268.Google Scholar
Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of deep fluid. J. Appl. Mech. Tech. Phys. 9 (2), 190194.Google Scholar