Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T23:58:54.796Z Has data issue: false hasContentIssue false

Simple and efficient representations for the fundamental solutions of Stokes flow in a half-space

Published online by Cambridge University Press:  02 July 2015

Z. Gimbutas
Affiliation:
Information Technology Laboratory, National Institute of Standards and Technology, 325 Broadway, Mail Stop 891.01, Boulder, CO 80305-3328, USA
L. Greengard
Affiliation:
Simons Center for Data Analysis, Simons Foundation, 160 Fifth Avenue, New York, NY 10010, USA Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012-1110, USA
S. Veerapaneni*
Affiliation:
Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA
*
Email address for correspondence: shravan@umich.edu

Abstract

We derive new formulae for the fundamental solutions of slow viscous flow, governed by the Stokes equations, in a half-space. They are simpler than the classical representations obtained by Blake and collaborators, and can be efficiently implemented using existing fast solver libraries. We show, for example, that the velocity field induced by a Stokeslet can be annihilated on the boundary (to establish a zero-slip condition) using a single reflected Stokeslet combined with a single Papkovich–Neuber potential that involves only a scalar harmonic function. The new representation has a physically intuitive interpretation.

Type
Rapids
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aderogba, K. & Blake, J. R. 1978a Action of a force near the planar surface between semi-infinite immiscible liquids at very low Reynolds numbers: addendum. Bull. Austral. Math. Soc. 19 (2), 309318.Google Scholar
Aderogba, K. & Blake, J. R. 1978b Action of a force near the planar surface between two semi-infinite immiscible liquids at very low Reynolds numbers. Bull. Austral. Math. Soc. 18 (3), 345356.Google Scholar
Bhattacharya, S. & Bławzdziewicz, J. 2002 Image system for Stokes-flow singularity between two parallel planar walls. J. Math. Phys. 43 (11), 57205731.Google Scholar
Blake, J. R. 1971 A note on the image system for a Stokeslet in a no-slip boundary. Math. Proc. Camb. Phil. Soc. 70 (2), 303310.Google Scholar
Blake, J. R. 1974 Singularities of viscous flow. J. Engng Maths 8 (2), 113124.Google Scholar
Blake, J. R. & Chwang, A. T. 1974 Fundamental singularities of viscous flow. J. Engng Maths 8 (1), 2329.Google Scholar
Cichocki, B. & Jones, R. B. 1998 Image representation of a spherical particle near a hard wall. Physica A 258 (3), 273302.Google Scholar
Fong, W. & Darve, E. 2009 The black-box fast multipole method. J. Comput. Phys. 228 (23), 87128725.Google Scholar
Frangi, A. 2005 A fast multipole implementation of the qualocation mixed-velocity–traction approach for exterior Stokes flows. Engng Anal. Bound. Elem. 29 (11), 10391046.Google Scholar
Fu, Y., Klimkowski, K. J., Rodin, G. J., Berger, E., Browne, J. C., Singer, J. K., Van De Geijn, R. A. & Vemaganti, S. K. 1998 A fast solution method for three-dimensional many-particle problems of linear elasticity. Intl J. Numer. Meth. Engng 42 (7), 12151229.Google Scholar
Fu, Y. & Rodin, G. J. 2000 Fast solution method for three-dimensional Stokesian many-particle problems. Commun. Numer. Meth. Engng 16 (2), 145149.Google Scholar
Gimbutas, Z. & Greengard, L.2012, STFMMLIB3 – fast multipole method (FMM) library for the evaluation of potential fields governed by the Stokes equations in $R^{3}$ , http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html.Google Scholar
Gumerov, N. A. & Duraiswami, R. 2006 Fast multipole method for the biharmonic equation in three dimensions. J. Comput. Phys. 215 (1), 363383.Google Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media. Springer.Google Scholar
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Lorentz, H. A. 1896 Eene algemeene stelling omtrent de beweging eener vloeistof met wrijving en eenige daaruit afgeleide gevolgen. Versl. K. Akad. W. Amsterdam 5, 168175.Google Scholar
Lorentz, H. A. 1907 Ein allgemeiner Satz, die Bewegung einer reibenden Flüssigkeit betreffend, nebst einigen Anwendungen desselben. Abhand. Theor. Phys. 1, 2342.Google Scholar
Mindlin, R. D. 1936 Force at a point in the interior of a semi-infinite solid. J. Appl. Phys. 7 (5), 195202.Google Scholar
Neuber, H. 1934 Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitätstheorie. Der Hohlkegel unter Einzellast als Beispiel. Z. Angew. Math. Mech. 14 (4), 203212.Google Scholar
Papkovich, P. F. 1932 Solution générale des équations differentielles fondamentales d’élasticité exprimée par trois fonctions harmoniques. C. R. Acad. Sci. Paris 195, 513515.Google Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.Google Scholar
Spagnolie, S. E. & Lauga, E. 2012 Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105147.Google Scholar
Tornberg, A. K. & Greengard, L. 2008 A fast multipole method for the three-dimensional Stokes equations. J. Comput. Phys. 227 (3), 16131619.Google Scholar
Veerapaneni, S. K., Rahimian, A., Biros, G. & Zorin, D. 2011 A fast algorithm for simulating vesicle flows in three dimensions. J. Comput. Phys. 230 (14), 56105634.Google Scholar
Wang, H., Lei, T., Li, J., Huang, J. & Yao, Z. 2007 A parallel fast multipole accelerated integral equation scheme for 3D Stokes equations. Intl J. Numer. Meth. Engng 70 (7), 812839.CrossRefGoogle Scholar
Wang, H. T. & Yao, Z. H. 2005 A new fast multipole boundary element method for large scale analysis of mechanical properties in 3d particle-reinforced composites. Comput. Model. Engng Sci. 7 (1), 8595.Google Scholar
Wang, X., Kanapka, J., Ye, W., Aluru, N. R. & White, J. 2006 Algorithms in FastStokes and its application to micromachined device simulation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25 (2), 248257.Google Scholar
Ying, L., Biros, G. & Zorin, D. 2004 A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J. Comput. Phys. 196 (2), 591626.Google Scholar
Yoshida, K., Nishimura, N. & Kobayashi, S. 2001 Application of fast multipole Galerkin boundary integral equation method to elastostatic crack problems in 3d. Intl J. Numer. Meth. Engng 50 (3), 525547.Google Scholar
Yu, H. Y. 2003 Fundamental singularities in a two-fluid Stokes flow with a plane interface. J. Mech. 19 (1), 263270.Google Scholar