Published online by Cambridge University Press: 26 April 2006
Employing a recently proposed ‘multi-wave interaction’ theory (Glazman 1992), inertial spectra of capillary-gravity waves are derived. This case is characterized by a rather high degree of nonlinearity and a complicated dispersion law. The absence of scale invariance makes this and some other problems of wave turbulence (e.g. nonlinear inertia-gravity waves) intractable by small-perturbation techniques, even in the weak-turbulence limit. The analytical solution obtained in the present work for an arbitrary degree of nonlinearity is shown to be in reasonable agreement with experimental data. The theory explains the dependence of the wave spectrum on wind input and describes the accelerated roll-off of the spectral density function in the narrow sub-range separating scale-invariant regimes of purely gravity and capillary waves, while the appropriate (long- and short-wave) limits yield power laws corresponding to the Zakharov-Filonenko and Phillips spectra.