Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T09:59:20.241Z Has data issue: false hasContentIssue false

A simulation-based mechanistic study of turbulent wind blowing over opposing water waves

Published online by Cambridge University Press:  27 August 2020

Tao Cao
Affiliation:
Department of Mechanical Engineering and St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN55455, USA
Bing-Qing Deng
Affiliation:
Department of Mechanical Engineering and St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN55455, USA
Lian Shen*
Affiliation:
Department of Mechanical Engineering and St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN55455, USA
*
Email address for correspondence: shen@umn.edu

Abstract

We perform large-eddy simulation (LES) and theoretical analysis to investigate the effects of opposing waves on overlying turbulent wind. The LES results show that opposing waves induce nearly antisymmetric vertical velocity $\tilde {w}$ in the wind on the two sides of the wave crest, while the streamwise velocity $\tilde {u}$ away from the surface and the air pressure $\tilde {p}$ seem symmetric. To study the mechanisms for the wave-induced airflow, we develop a viscous model by linearising the phase-averaged Navier–Stokes equations in the mapped computational curvilinear coordinate. To illustrate the flow dynamics, we split $\tilde {w}$ into an antisymmetric component and a symmetric component. The solution of the antisymmetric component of $\tilde {w}$ from the viscous curvilinear model agrees well with the LES results for different opposing wave conditions. According to the viscous curvilinear model, the large-magnitude antisymmetric component of $\tilde {w}$ is driven by the wave kinematics at the surface and amplified by the mean shear and viscous stress in the air, and it causes the strong symmetric components of $\tilde {u}$ and $\tilde {p}$. In contrast, the small-magnitude symmetric component of $\tilde {w}$ is forced by the antisymmetric $\tilde {w}$ through viscous and turbulent stresses near the surface, and it can be described by a further simplified inviscid curvilinear model away from the surface. It is discovered that the weak symmetric $\tilde {w}$ causes a slight asymmetry in $\tilde {u}$ and $\tilde {p}$, and generates a mean wave-coherent stress and the form drag on the wave surface. The wave attenuation rates quantified using the form drag agree with the published experiments.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akervik, E. & Vartdal, M. 2019 The role of wave kinematics in turbulent flow over waves. J. Fluid Mech. 880, 890915.CrossRefGoogle Scholar
Al-Zanaidi, M. A. & Hui, W. H. 1984 Turbulent airflow over water waves – a numerical study. J. Fluid Mech. 148, 225246.CrossRefGoogle Scholar
Anderson, D. A., Tannehill, J. C. & Pletcher, R. H. 1984 Computational Fluid Mechanics and Heat Transfer. McGraw-Hill.Google Scholar
Ardhuin, F., Herbers, T. H. C., van Vledder, G. Ph., Watts, K. P., Jensen, R. & Graber, H. C. 2007 Swell and slanting-fetch effects on wind wave growth. J. Phys. Oceanogr. 37, 908931.CrossRefGoogle Scholar
Banner, M. L. 1990 The influence of wave breaking on the surface pressure distribution in wind–wave interactions. J. Fluid Mech. 211, 463495.CrossRefGoogle Scholar
Belcher, S. E. & Hunt, J. C. R. 1993 Turbulent shear flow over slowly moving waves. J. Fluid Mech. 251, 109148.CrossRefGoogle Scholar
Belcher, S. E. & Hunt, J. C. R. 1998 Turbulent flow over hills. Annu. Rev. Fluid Mech. 30, 507538.CrossRefGoogle Scholar
Bowers, J. A., Morton, I. D. & Mould, G. I. 2000 Directional statistics of the winds and waves. App. Ocean Res. 22, 1330.CrossRefGoogle Scholar
Buckles, J., Hanratty, T. J. & Adrian, R. J. 1984 Turbulent flow over large-amplitude wavy surfaces. J. Fluid Mech. 140, 2744.CrossRefGoogle Scholar
Buckley, M. P. & Veron, F. 2016 Structure of the airflow above surface waves. J. Phys. Oceanogr. 46, 13771397.CrossRefGoogle Scholar
Choi, H. & Moin, P. 2012 Grid-point requirements for large eddy simulation: Chapman's estimates revisited. Phys. Fluids 24, 011702.CrossRefGoogle Scholar
Chou, Y. J. & Fringer, O. B. 2010 Consistent discretization for simulations of flows with moving generalized curvilinear coordinates. Intl J. Numer. Meth. Fluids 62, 802826.Google Scholar
Cohen, J. E 1997 Theory of turbulent wind over fast and slow waves. PhD thesis, University of Cambridge.Google Scholar
Donelan, M. A. 1999 Wind-induced growth and attenuation of laboratory waves. In Wind-Over-Wave Couplings, Perspectives and Prospects (ed. Sajjadi, S. G., Thomas, N. H. & Hunt, J. C. R.). Clarendon.Google Scholar
Donelan, M. A., Babanin, A. V., Young, I. R. & Banner, M. L. 2006 Wave-follower field measurements of the wind-input spectral function. Part II: parameterization of the wind input. J. Phys. Oceanogr. 36, 16721689.CrossRefGoogle Scholar
Druzhinin, O. A., Troitskaya, Y. I. & Zilitinkevich, S. S. 2012 Direct numerical simulation of a turbulent wind over a wavy water surface. J. Geophys. Res. Oceans 117, C00J05.CrossRefGoogle Scholar
Druzhinin, O. A., Troitskaya, Y. I. & Zilitinkevich, S. S. 2016 Stably stratified airflow over a waved water surface. Part 1: stationary turbulence regime. Q. J. R. Meteorol. Soc. 142, 759772.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–765.CrossRefGoogle Scholar
Grare, L., Lenain, L. & Melville, W. K. 2013 a Wave-coherent airflow and critical layers over ocean waves. J. Phys. Oceanogr. 43, 21562172.CrossRefGoogle Scholar
Grare, L., Lenain, L. & Melville, W. K. 2018 Vertical profiles of the wave-induced airflow above ocean surface waves. J. Phys. Oceanogr. 48, 29012922.CrossRefGoogle Scholar
Grare, L., Peirson, W. L., Branger, H., Walker, J. W., Giovanangeli, J.-P. & Makin, V. 2013 b Growth and dissipation of wind-forced, deep-water waves. J. Fluid Mech. 722, 550.CrossRefGoogle Scholar
Hao, X. & Shen, L. 2019 Wind–wave coupling study using LES of wind and phase-resolved simulation of nonlinear waves. J. Fluid Mech. 874, 391425.CrossRefGoogle Scholar
Hara, T. & Sullivan, P. P. 2015 Wave boundary layer turbulence over surface waves in a strongly forced condition. J. Phys. Oceanogr. 45, 868883.CrossRefGoogle Scholar
Harris, J. A., Fulton, I. & Street, R. L. 1995 Decay of waves in an adverse wind. In Proceedings of the Sixth Asian Congress of Fluid Mechanics, May 22–26, 1995, Singapore (ed. Chew, Y. T. & Tso, C. P.).Google Scholar
Hasselmann, D. & Bösenberg, J. 1991 Field measurements of wave-induced pressure over wind-sea and swell. J. Fluid Mech. 230, 391428.CrossRefGoogle Scholar
Hristov, T., Friehe, C. & Miller, S. 1998 Wave-coherent fields in air flow over ccean waves: identification of cooperative behavior buried in turbulence. Phys. Rev. Lett. 81, 52455248.CrossRefGoogle Scholar
Hristov, T. & Ruiz-Plancarte, J. 2014 Dynamic balances in a wavy boundary layer. J. Phys. Oceanogr. 44, 31853194.CrossRefGoogle Scholar
Hristov, T. S., Miller, S. D. & Friehe, C. A. 2003 Dynamical coupling of wind and ocean waves through wave-induced air flow. Nature 422, 5558.CrossRefGoogle ScholarPubMed
Hsu, C.-T. & Hsu, E. Y. 1983 On the structure of turbulent flow over a progressive water wave: theory and experiment in a transformed wave-following coordinate system. Part 2. J. Fluid Mech. 131, 123153.CrossRefGoogle Scholar
Hsu, C.-T., Hsu, E. Y. & Street, R. L. 1981 On the structure of turbulent flow over a progressive water wave: theory and experiment in a transformed, wave-following co-ordinate system. J. Fluid Mech. 105, 87117.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Reynolds, W. C. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41, 241258.CrossRefGoogle Scholar
Jacobs, S. J. 1987 An asymptotic theory for the turbulent flow over a progressive water wave. J. Fluid Mech. 174, 6980.CrossRefGoogle Scholar
Jiang, Q., Sullivan, P., Wang, S., Doyle, J. & Vincent, L. 2016 Impact of swell on air–sea momentum flux and marine boundary layer under low-wind conditions. J. Atmos. Sci. 73, 26832697.CrossRefGoogle Scholar
Kihara, N., Hanazaki, H., Mizuya, T. & Ueda, H. 2007 Relationship between airflow at the critical height and momentum transfer to the traveling waves. Phys. Fluids 19, 015102.CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Li, P., Xu, D. & Taylor, P. 2000 Numerical modelling of turbulent airflow over water waves. Boundary-Layer Meteorol. 95, 397425.CrossRefGoogle Scholar
Lighthill, M. J. 1962 Physical interpretation of the mathematical theory of wave generation by wind. J. Fluid Mech. 14, 385398.CrossRefGoogle Scholar
Lilly, D. K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4, 633635.CrossRefGoogle Scholar
Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.Google Scholar
Mastenbroek, C. 1996 Wind wave interaction. PhD thesis, Delft Technical University.Google Scholar
Miles, J. W. 1957 On the generation of surface waves by shear flows. J. Fluid Mech. 3, 185204.CrossRefGoogle Scholar
Miles, J. W. 1993 Surface-wave generation revisited. J. Fluid Mech. 256, 427441.CrossRefGoogle Scholar
Miles, J. W. 1996 Surface-wave generation: a viscoelastic model. J. Fluid Mech. 322, 131145.CrossRefGoogle Scholar
Mitsuyasu, H. & Honda, T. 1982 Wind-induced growth of water waves. J. Fluid Mech. 123, 425442.CrossRefGoogle Scholar
Mitsuyasu, H. & Yoshida, Y. 2005 Air–sea interactions under the existence of opposing swell. J. Oceanogr. 61, 141154.CrossRefGoogle Scholar
Orszag, S. A. 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50, 689703.CrossRefGoogle Scholar
Peirson, W. L., Garcia, A. W. & Pells, S. E. 2003 Water wave attenuation due to opposing wind. J. Fluid Mech. 487, 345365.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Rutgersson, A. & Sullivan, P. P. 2005 The effect of idealized water waves on the turbulence structure and kinetic energy budgets in the overlying airflow. Dyn. Atmos. Oceans 38, 147171.CrossRefGoogle Scholar
Shemdin, O. H. & Hsu, E. Y. 1967 Direct measurement of aerodynamic pressure above a simple progressive gravity wave. J. Fluid Mech. 30, 403416.CrossRefGoogle Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. Mon. Weath. Rev. 91, 99164.2.3.CO;2>CrossRefGoogle Scholar
Snyder, R. L., Dobson, F. W., Elliott, J. A. & Long, R. B. 1981 Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech. 102, 159.CrossRefGoogle Scholar
Sullivan, P. P., Edson, J. B., Hristov, T. & McWilliams, J. C. 2008 Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J. Atmos. Sci. 65, 12251245.CrossRefGoogle Scholar
Sullivan, P. P. & McWilliams, J. C. 2010 Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech. 42, 1942.CrossRefGoogle Scholar
Sullivan, P. P., McWilliams, J. C. & Moeng, C.-H. 2000 Simulation of turbulent flow over idealized water waves. J. Fluid Mech. 404, 4785.CrossRefGoogle Scholar
Van Duin, C. A. & Janssen, P. A. E. M. 1992 An analytic model of the generation of surface gravity-waves by turbulent air-flow. J. Fluid Mech. 236, 197215.CrossRefGoogle Scholar
Veron, F., Saxena, G. & Misra, S. K. 2007 Measurements of the viscous tangential stress in the airflow above wind waves. Geophys. Res. Lett. 34, 19591961.CrossRefGoogle Scholar
Wang, L.-H., Zhang, W.-Y., Hao, X., Huang, W.-X., Shen, L., Xu, C.-X. & Zhang, Z. 2020 Surface wave effects on energy transfer in overlying turbulent flow. J. Fluid Mech. 893, A21.CrossRefGoogle Scholar
Wen, X. & Mobbs, S. 2015 Numerical simulations of air–water flow of a non-linear progressive wave in an opposing wind. Boundary-Layer Meterol. 156, 91112.CrossRefGoogle Scholar
Wright, C. W., Walsh, E. J., Vandemark, D., Krabill, W. B., Garcia, A. W., Houston, S. H., Powell, M. D., Black, P. G. & Marks, F. D. 2001 Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr. 31, 24722488.2.0.CO;2>CrossRefGoogle Scholar
Yang, D., Meneveau, C. & Shen, L. 2013 Dynamic modelling of sea-surface roughness for large-eddy simulation of wind over ocean wavefield. J. Fluid Mech. 726, 6299.CrossRefGoogle Scholar
Yang, D., Meneveau, C. & Shen, L. 2014 a Effect of downwind swells on offshore wind energy harvesting – a large-eddy simulation study. J. Renew. Energy 70, 1123.CrossRefGoogle Scholar
Yang, D., Meneveau, C. & Shen, L. 2014 b Large-eddy simulation of offshore wind farm. Phys. Fluids 26, 025101.CrossRefGoogle Scholar
Yang, D. & Shen, L. 2009 Characteristics of coherent vortical structures in turbulent flows over progressive surface waves. Phys. Fluids 21, 125106.CrossRefGoogle Scholar
Yang, D. & Shen, L. 2010 Direct-simulation-based study of turbulent flow over various waving boundaries. J. Fluid Mech. 650, 131180.CrossRefGoogle Scholar
Yang, D. & Shen, L. 2011 a Simulation of viscous flows with undulatory boundaries. Part I: basic solver. J. Comput. Phys. 230, 54885509.CrossRefGoogle Scholar
Yang, D. & Shen, L. 2011 b Simulation of viscous flows with undulatory boundaries. Part II: coupling with other solvers for two-fluid computations. J. Comput. Phys. 230, 55105531.CrossRefGoogle Scholar
Yang, D. & Shen, L. 2017 Direct numerical simulation of scalar transport in turbulent flows over progressive surface waves. J. Fluid Mech. 819, 58103.CrossRefGoogle Scholar
Young, I. R. & Sobey, R. J. 1985 Measurements of the wind–wave energy flux in an opposing wind. J. Fluid Mech. 151, 427442.CrossRefGoogle Scholar
Yousefi, K. & Veron, F. 2020 Boundary layer formulations in orthogonal curvilinear coordinates for flow over wind-generated surface waves. J. Fluid Mech. 888, A11.CrossRefGoogle Scholar
Yousefi, K., Veron, F. & Buckley, M. P. 2020 Momentum flux measurements in the airflow over wind-generated surface waves. J. Fluid Mech. 895, A15.CrossRefGoogle Scholar
Supplementary material: PDF

Cao et al. supplementary material

Cao et al. supplementary material

Download Cao et al. supplementary material(PDF)
PDF 205.3 KB