Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T17:39:41.107Z Has data issue: false hasContentIssue false

The singularity method in unsteady Stokes flow: hydrodynamic force and torque around a sphere in time-dependent flows

Published online by Cambridge University Press:  22 January 2019

C. H. Hsiao*
Affiliation:
Department of Civil Engineering and Hydrotech Research Institute, National Taiwan University, Taipei 10617, Taiwan
D. L. Young
Affiliation:
Department of Civil Engineering and Hydrotech Research Institute, National Taiwan University, Taipei 10617, Taiwan
*
Email address for correspondence: dlyoung@ntu.edu.tw

Abstract

The equations for the hydrodynamic force and torque acting on a sphere in unsteady Stokes equations under different flow conditions are solved analytically by means of the singularity method. This analytical technique is based on the combination of suitable singularity solutions (also called fundamental solutions) such as primary Stokeslets, potential dipoles, or higher-order singularities, to construct the flow field. The different flows considered here include four examples: (1) a rotating sphere in a viscous flow, (2) a stationary sphere in a time-dependent shear flow, (3) a sphere with free rotation in a simple shear flow, as well as (4) a stationary sphere in a time-dependent axisymmetric parabolic flow. Our paradigm is to derive the fundamental solutions in unsteady Stokes flows and to express the solutions as a convolution integral in time using the time–space fundamental solutions. Next the Laplace transform is used to determine the strength of the distributed singularities that induce the velocity field around a stationary or rotating sphere. Then we use the computed strength of the singularities to derive hydrodynamic force and torque. In particular, for the problem of a stationary sphere in unsteady axisymmetric parabolic flow, our solution for the time-dependent force acting on the sphere consists of five force components – the well-known quasi-steady Stokes drag, the added mass term, the Basset historic (memory) force, and two additional memory forces. The first additional memory force due to the rate change of velocity, we find, is similar to the result obtained by Lawrence & Weinbaum (J. Fluid Mech., vol. 171, 1986, pp. 209–218) for the ostensibly unrelated setting of a slightly deformed translating spheroid. The second additional memory force comes from the effect of the rate change of acceleration and is found for the first time in this study to the best of our knowledge.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avudainayagam, A. & Geetha, J. 1995 Unsteady singularities of Stokes’ flows in two dimensions. Intl J. Engng Sci. 33, 17131724.10.1016/0020-7225(95)00028-VGoogle Scholar
Basset, A. B. 1888 A Treatise on Hydrodynamics, vol. 2. Deighton Bell.Google Scholar
Batchelor, G. K. 1970 Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44, 419440.10.1017/S002211207000191XGoogle Scholar
Bentwich, M. & Miloh, V. 1978 The unsteady matched Stokes–Oseen solution for the flow past a sphere. Fluid Mech. 88, 1732.10.1017/S0022112078001962Google Scholar
Blake, J. R. 1971 A note on the image system for a Stokeslet in a no-slip boundary. Proc. Camb. Phil. Soc. 70, 303310.10.1017/S0305004100049902Google Scholar
Brenner, H. & Happel, J. 1958 Slow viscous flow past a sphere in a cylindrical tube. J. Fluid Mech. 4, 195213.10.1017/S0022112058000392Google Scholar
Bretherton, F. P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14, 284304.10.1017/S002211206200124XGoogle Scholar
Burgers, J. M. 1938 On the motion of small particles of elongated form suspended in a viscous liquid. Chap. I11 of Second Report on Viscosity and Plasticity. K. Ned. Akad. Wet. Verhand. 16, 113184.Google Scholar
Chan, A. T. & Chwang, A. T. 2000 The unsteady Stokeslet and Oseenlet. Proc. Inst. Mech. Engrs 214, 175179.Google Scholar
Chwang, A. T. & Wu, T. Y. 1975 Hydrodynamics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech. 67, 787815.10.1017/S0022112075000614Google Scholar
Clarke, R. J., Jensen, O. E., Billingham, J. & Williams, P. M. 2006 Three-dimensional flow due to a microcantilever oscillating near a wall: an unsteady slender-body analysis. Proc. R. Soc. A 462, 913933.10.1098/rspa.2005.1607Google Scholar
Cox, R. G., Zia, I. Y. Z. & Mason, S. G. 1968 Particle motions in sheared suspensions XXV. Streamlines around cylinders and spheres. J. Colloid Interface Sci. 27, 718.10.1016/0021-9797(68)90003-9Google Scholar
Cox, R. G. 1970 The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech. 44, 791810.10.1017/S002211207000215XGoogle Scholar
Feng, J. & Joseph, D. D. 1995 The unsteady motion of solid bodies in creeping flows. J. Fluid Mech. 303, 83102.10.1017/S0022112095004186Google Scholar
Feuillebois, F. & Lasek, A. 1978 On the rotational historic term in non-stationary Stokes flow. Q. J. Mech. Appl. Maths 31, 435443.10.1093/qjmam/31.4.435Google Scholar
Grimm, M., Franosch, T. & Jeney, S. 2012 High-resolution detection of Brownian motion for quantitative optical tweezers experiments. Phys. Rev. E 86 (2), 021912.10.1103/PhysRevE.86.021912Google Scholar
Guenther, R. B. & Thomann, E. A. 2007 Fundamental solutions of Stokes and Oseen problem in two spatial dimensions. J. Math. Fluid Mech. 9, 489505.10.1007/s00021-005-0209-zGoogle Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice Hall.Google Scholar
Hasegawa, M., Onishi, M. & Soya, M. 1986 Fundamental solution for transient incompressible viscous flow and its application to the two dimensional problem. Struct. Engng Earthquake Eng. 3, 2332.Google Scholar
Hsiao, C. H. & Young, D. L. 2014 Calculation of hydrodynamic forces for unsteady Stokes flows by singularity integral equations based on fundamental solutions. J. Mech. 30, 129136.10.1017/jmech.2013.56Google Scholar
Hsiao, C. H. & Young, D. L. 2015 The derivation and application of fundamental solutions for unsteady Stokes equations. J. Mech. 31, 683691.10.1017/jmech.2015.70Google Scholar
Jeffery, G. B. 1922 Motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.10.1098/rspa.1922.0078Google Scholar
Kheifets, S., Simha, A., Melin, K., Li, T. & Raizen, M. G. 2014 Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss. Science 343, 14931496.10.1126/science.1248091Google Scholar
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics. Butterworth-Heinemann.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon Press.Google Scholar
Lawrence, C. J. & Weinbaum, S. 1986 The force on an axisymmetric body in linearized time-dependent motion: a new memory term. J. Fluid Mech. 171, 209218.10.1017/S0022112086001428Google Scholar
Lighthill, J. 1996 Helical distributions of Stokeslets. J. Engng Maths 30, 3578.10.1007/BF00118823Google Scholar
Lubich, C. & Schadle, A. 2002 Fast convolution for non-reflecting boundary conditions. SIAM J. Sci. Comput. 24 (1), 161182.10.1137/S1064827501388741Google Scholar
Mazur, P. & Bedeaux, D. 1974 A generalization of Faxén theorem to nonsteady motion of a sphere through an incompressible fluid in arbitrary flow. Physica 76, 235246.10.1016/0031-8914(74)90197-9Google Scholar
Mo, J., Simha, A., Kheifets, S. & Raizen, M. G. 2015 Testing the Maxwell–Boltzmann distribution using Brownian particles. Opt. Express. 23 (2), 18881893.10.1364/OE.23.001888Google Scholar
Oseen, C. W. 1927 Hydrodynamik. Akad. Verlagsgesellschaft.Google Scholar
Pozrikidis, C. 1989 A singularity method for unsteady linearized flow. Phys. Fluids A1, 15081520.10.1063/1.857329Google Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.10.1017/CBO9780511624124Google Scholar
Saffman, P. G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385400.10.1017/S0022112065000824Google Scholar
Sano, T. 1981 Unsteady flow past a sphere at low Reynolds number. J. Fluid Mech. 112, 43441.10.1017/S0022112081000499Google Scholar
Segre, G. & Silberberg, A. 1962 Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation. J. Fluid Mech. 14, 136157.10.1017/S0022112062001111Google Scholar
Shu, J. J. & Chwang, A. T. 2001 Generalized fundamental solutions for unsteady viscous flows. Phys. Rev. E. 63, 051201.10.1103/PhysRevE.63.051201Google Scholar
Simha, R. 1936 Untersuchungen über die Viskosität von Suspensionen und Lösungen. Kolloidn. Z. 76, 1619.10.1007/BF01432457Google Scholar
Smith, S. H. 1987 Unsteady Stokes flow in two dimensions. J. Engng Maths 21, 271285.10.1007/BF00132679Google Scholar
Sneddon, I. N. 1972 The Use of Integral Transforms. McGraw-Hill.Google Scholar
Stokes, G. G. 1851 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 8106.Google Scholar