Hostname: page-component-6bf8c574d5-qdpjg Total loading time: 0 Render date: 2025-02-26T18:42:55.208Z Has data issue: false hasContentIssue false

Small-scale shear layers in isotropic turbulence of viscoelastic fluids

Published online by Cambridge University Press:  26 February 2025

Tomoaki Watanabe*
Affiliation:
Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615-8540, Japan
Hugo Abreu
Affiliation:
LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
Koji Nagata
Affiliation:
Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615-8540, Japan
Carlos B. da Silva
Affiliation:
LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
*
Email address for correspondence: watanabe.tomoaki.8x@kyoto-u.ac.jp

Abstract

Small-scale shear layers arising from the turbulent motion of viscoelastic fluids are investigated through direct numerical simulations of statistically steady, homogeneous isotropic turbulence in a fluid described by the FENE-P model. These shear layers are identified via a triple decomposition of the velocity gradient tensor. The viscoelastic effects are examined through the Weissenberg number ($Wi$), representing the ratio of the longest polymer relaxation time scale to the Kolmogorov time scale. The mean flow around these shear layers is analysed within a local reference frame that characterises shear orientation. In both Newtonian and viscoelastic turbulence, shear layers appear in a straining flow, featuring stretching in the shear vorticity direction and compression in the layer normal direction. Polymer stresses are markedly influenced by the shear and strain, which enhance kinetic energy dissipation due to the polymers. The shear layers in viscoelastic turbulence exhibit a high aspect ratio, undergoing significant characteristic changes once $Wi$ exceeds approximately 2. As $Wi$ increases, the extensive strain weakens, diminishing vortex stretching. This change coincides with an imbalance between extension and compression in the straining flow. In the shear layer, the interaction between vorticity and polymer stress causes the destruction and production of enstrophy at low and high $Wi$ values, respectively. Enstrophy production at high $Wi$ is induced by normal polymer stress oriented along the shear flow, associated with the diminished extensive strain. The $Wi$-dependent behaviour of these shear layers aligns with the overall flow characteristics, underscoring their pivotal roles in vorticity dynamics and kinetic energy dissipation in viscoelastic turbulence.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, H., Pinho, F.T. & da Silva, C.B. 2022 Turbulent entrainment in viscoelastic fluids. J. Fluid Mech. 934, A36.CrossRefGoogle Scholar
Adrian, R.J., Meinhart, C.D. & Tomkins, C.D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Alvelius, K. 1999 Random forcing of three-dimensional homogeneous turbulence. Phys. Fluids 11 (7), 18801889.CrossRefGoogle Scholar
Beronov, K.N. & Kida, S. 1996 Linear two-dimensional stability of a Burgers vortex layer. Phys. Fluids 8 (4), 10241035.CrossRefGoogle Scholar
Bhatt, K. & Tsuji, Y. 2021 Identification of vortex structures in flow fields using tomographic PIV method. J. Fluid Sci. Technol. 16 (3), JFST0018.CrossRefGoogle Scholar
Bird, R.B., Curtiss, C.F., Armstrong, R.C. & Hassager, O. 1987 Dynamics of Polymeric Liquids, Volume 2: Kinetic Theory. Wiley.Google Scholar
Bird, R.B., Dotson, P.J. & Johnson, N.L. 1980 Polymer solution rheology based on a finitely extensible bead–spring chain model. J. Non-Newtonian Fluid Mech. 7, 213235.CrossRefGoogle Scholar
Buxton, O.R.H. & Ganapathisubramani, B. 2010 Amplification of enstrophy in the far field of an axisymmetric turbulent jet. J. Fluid Mech. 651, 483502.CrossRefGoogle Scholar
Cai, W.-H., Li, F.-C. & Zhang, H.-N. 2010 DNS study of decaying homogeneous isotropic turbulence with polymer additives. J. Fluid Mech. 665, 334356.CrossRefGoogle Scholar
Chen, X., Chung, Y.M. & Wan, M. 2021 The uniform-momentum zones and internal shear layers in turbulent pipe flows at Reynolds numbers up to $Re_\tau = 1000$. Intl J. Heat Fluid Flow 90, 108817.CrossRefGoogle Scholar
Chong, M.S., Perry, A.E. & Cantwell, B.J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids 2 (5), 765777.CrossRefGoogle Scholar
Corcos, G.M. & Lin, S.J. 1984 The mixing layer: deterministic models of a turbulent flow. Part 2. The origin of the three-dimensional motion. J. Fluid Mech. 139, 6795.CrossRefGoogle Scholar
Corrsin, S. & Kistler, A.L. 1955 Free-stream boundaries of turbulent flows. NACA Tech. Rep. TN-1244.Google Scholar
Das, R. & Girimaji, S.S. 2020 Revisiting turbulence small-scale behavior using velocity gradient triple decomposition. New J. Phys. 22 (6), 063015.CrossRefGoogle Scholar
Davidson, P.A. 2004 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
De Angelis, E., Casciola, C.M., Benzi, R. & Piva, R. 2005 Homogeneous isotropic turbulence in dilute polymers. J. Fluid Mech. 531, 110.CrossRefGoogle Scholar
Eisma, J., Westerweel, J., Ooms, G. & Elsinga, G.E. 2015 Interfaces and internal layers in a turbulent boundary layer. Phys. Fluids 27 (5), 055103.CrossRefGoogle Scholar
Elsinga, G.E., Ishihara, T., Goudar, M.V., da Silva, C.B. & Hunt, J.C.R. 2017 The scaling of straining motions in homogeneous isotropic turbulence. J. Fluid Mech. 829, 3164.CrossRefGoogle Scholar
Elsinga, G.E. & Marusic, I. 2010 Universal aspects of small-scale motions in turbulence. J. Fluid Mech. 662, 514539.CrossRefGoogle Scholar
Elsinga, G.E. & Marusic, I. 2016 The anisotropic structure of turbulence and its energy spectrum. Phys. Fluids 28 (1), 011701.CrossRefGoogle Scholar
Enoki, R., Watanabe, T. & Nagata, K. 2023 Statistical properties of shear and nonshear velocity components in isotropic turbulence and turbulent jets. Phys. Rev. Fluids 8 (10), 104602.CrossRefGoogle Scholar
Fan, D., Xu, J., Yao, M.X. & Hickey, J.-P. 2019 On the detection of internal interfacial layers in turbulent flows. J. Fluid Mech. 872, 198217.CrossRefGoogle Scholar
Ferreira, P.O., Pinho, F.T. & da Silva, C.B. 2016 Large-eddy simulations of forced isotropic turbulence with viscoelastic fluids described by the FENE-P model. Phys. Fluids 28 (12), 125104.CrossRefGoogle Scholar
Fiscaletti, D., Buxton, O.R.H. & Attili, A. 2021 Internal layers in turbulent free-shear flows. Phys. Rev. Fluids 6 (3), 034612.CrossRefGoogle Scholar
Ganapathisubramani, B., Lakshminarasimhan, K. & Clemens, N.T. 2008 Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry. J. Fluid Mech. 598, 141175.CrossRefGoogle Scholar
Ghira, A.A., Elsinga, G.E. & da Silva, C.B. 2022 Characteristics of the intense vorticity structures in isotropic turbulence at high Reynolds numbers. Phys. Rev. Fluids 7 (10), 104605.CrossRefGoogle Scholar
Goudar, M.V. & Elsinga, G.E. 2018 Tracer particle dispersion around elementary flow patterns. J. Fluid Mech. 843, 872897.CrossRefGoogle Scholar
Graham, M.D. 2014 Drag reduction and the dynamics of turbulence in simple and complex fluids. Phys. Fluids 26 (10), 101301.CrossRefGoogle Scholar
Green, M.A., Rowley, C.W. & Haller, G. 2007 Detection of Lagrangian coherent structures in three-dimensional turbulence. J. Fluid Mech. 572, 111120.CrossRefGoogle Scholar
Guimarães, M.C., Pimentel, N., Pinho, F.T. & da Silva, C.B. 2020 Direct numerical simulations of turbulent viscoelastic jets. J. Fluid Mech. 899, 1137.CrossRefGoogle Scholar
Guimarães, M.C., Pinho, F.T. & da Silva, C.B. 2022 Turbulent planar wakes of viscoelastic fluids analysed by direct numerical simulations. J. Fluid Mech. 946, A26.CrossRefGoogle Scholar
Guimarães, M.C., Pinho, F.T. & da Silva, C.B. 2023 Viscoelastic jet instabilities studied by direct numerical simulations. Phys. Rev. Fluids 8 (10), 103301.CrossRefGoogle Scholar
Gul, M., Elsinga, G.E. & Westerweel, J. 2020 Internal shear layers and edges of uniform momentum zones in a turbulent pipe flow. J. Fluid Mech. 901, A10.CrossRefGoogle Scholar
Haller, G. 2023 Transport Barriers and Coherent Structures in Flow Data. Cambridge University Press.CrossRefGoogle Scholar
Haller, G., Hadjighasem, A., Farazmand, M. & Huhn, F. 2016 Defining coherent vortices objectively from the vorticity. J. Fluid Mech. 795, 136173.CrossRefGoogle Scholar
Hayashi, M., Watanabe, T. & Nagata, K. 2021 a Characteristics of small-scale shear layers in a temporally evolving turbulent planar jet. J. Fluid Mech. 920, A38.CrossRefGoogle Scholar
Hayashi, M., Watanabe, T. & Nagata, K. 2021 b The relation between shearing motions and the turbulent/non-turbulent interface in a turbulent planar jet. Phys. Fluids 33 (5), 055126.CrossRefGoogle Scholar
Horiuti, K. & Fujisawa, T. 2008 The multi-mode stretched spiral vortex in homogeneous isotropic turbulence. J. Fluid Mech. 595, 341366.CrossRefGoogle Scholar
Horiuti, K., Matsumoto, K. & Fujiwara, K. 2013 Remarkable drag reduction in non-affine viscoelastic turbulent flows. Phys. Fluids 25 (1), 015106.CrossRefGoogle Scholar
Horiuti, K. & Takagi, Y. 2005 Identification method for vortex sheet structures in turbulent flows. Phys. Fluids 17 (12), 121703.CrossRefGoogle Scholar
Jahanbakhshi, R., Vaghefi, N.S. & Madnia, C.K. 2015 Baroclinic vorticity generation near the turbulent/non-turbulent interface in a compressible shear layer. Phys. Fluids 27 (10), 105105.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jiang, X., Lefauve, A., Dalziel, S.B. & Linden, P.F. 2022 The evolution of coherent vortical structures in increasingly turbulent stratified shear layers. J. Fluid Mech. 947, A30.CrossRefGoogle Scholar
Jiménez, J. & Wray, A.A. 1998 On the characteristics of vortex filaments in isotropic turbulence. J. Fluid Mech. 373, 255285.CrossRefGoogle Scholar
Jiménez, J., Wray, A.A., Saffman, P.G. & Rogallo, R.S. 1993 The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 6590.CrossRefGoogle Scholar
Kalelkar, C., Govindarajan, R. & Pandit, R. 2005 Drag reduction by polymer additives in decaying turbulence. Phys. Rev. E 72 (1), 017301.CrossRefGoogle ScholarPubMed
Kang, H.S. & Meneveau, C. 2008 Experimental study of an active grid-generated shearless mixing layer and comparisons with large-eddy simulation. Phys. Fluids 20 (12), 125102.CrossRefGoogle Scholar
Keylock, C.J. 2018 The Schur decomposition of the velocity gradient tensor for turbulent flows. J. Fluid Mech. 848, 876905.CrossRefGoogle Scholar
Kim, K., Li, C.-F., Sureshkumar, R., Balachandar, S. & Adrian, R.J. 2007 Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow. J. Fluid Mech. 584, 281299.CrossRefGoogle Scholar
Kolář, V. 2007 Vortex identification: new requirements and limitations. Intl J. Heat Fluid Flow 28 (4), 638652.CrossRefGoogle Scholar
Kolář, V. & Šístek, J. 2014 Recent progress in explicit shear-eliminating vortex identification. In Proceedings of the 19th Australasian Fluid Mechanics Conference. Australasian Fluid Mechanics Society.Google Scholar
Kronborg, J. & Hoffman, J. 2023 The triple decomposition of the velocity gradient tensor as a standardized real Schur form. Phys. Fluids 35 (3), 031703.CrossRefGoogle Scholar
Li, W. & Graham, M.D. 2007 Polymer induced drag reduction in exact coherent structures of plane Poiseuille flow. Phys. Fluids 19, 083101.CrossRefGoogle Scholar
Lin, S.J. & Corcos, G.M. 1984 The mixing layer: deterministic models of a turbulent flow. Part 3. The effect of plane strain on the dynamics of streamwise vortices. J. Fluid Mech. 141, 139178.CrossRefGoogle Scholar
Liu, C., Gao, Y., Tian, S. & Dong, X. 2018 Rortex – a new vortex vector definition and vorticity tensor and vector decompositions. Phys. Fluids 30 (3), 035103.CrossRefGoogle Scholar
Maciel, Y., Robitaille, M. & Rahgozar, S. 2012 A method for characterizing cross-sections of vortices in turbulent flows. Intl J. Heat Fluid Flow 37, 177188.CrossRefGoogle Scholar
Nagata, R., Watanabe, T., Nagata, K. & da Silva, C.B. 2020 Triple decomposition of velocity gradient tensor in homogeneous isotropic turbulence. Comput. Fluids 198, 104389.CrossRefGoogle Scholar
Neamtu-Halic, M.M., Krug, D., Haller, G. & Holzner, M. 2019 Lagrangian coherent structures and entrainment near the turbulent/non-turbulent interface of a gravity current. J. Fluid Mech. 877, 824843.CrossRefGoogle Scholar
Ouellette, N.T., Xu, H. & Bodenschatz, E. 2009 Bulk turbulence in dilute polymer solutions. J. Fluid Mech. 629, 375385.CrossRefGoogle Scholar
Perlekar, P., Mitra, D. & Pandit, R. 2006 Manifestations of drag reduction by polymer additives in decaying, homogeneous, isotropic turbulence. Phys. Rev. Lett. 97 (26), 264501.CrossRefGoogle ScholarPubMed
Pirozzoli, S., Bernardini, M. & Grasso, F. 2010 On the dynamical relevance of coherent vortical structures in turbulent boundary layers. J. Fluid Mech. 648, 325349.CrossRefGoogle Scholar
Sakurai, Y. & Ishihara, T. 2018 Relationships between small-scale fluid motions and inertial particle clustering in turbulence. J. Phys. Soc. Japan 87 (9), 093401.CrossRefGoogle Scholar
Siggia, E.D. 1981 Numerical study of small-scale intermittency in three-dimensional turbulence. J. Fluid Mech. 107, 375406.CrossRefGoogle Scholar
da Silva, C.B., Dos Reis, R.J.N. & Pereira, J.C.F. 2011 The intense vorticity structures near the turbulent/non-turbulent interface in a jet. J. Fluid Mech. 685, 165190.CrossRefGoogle Scholar
Silva, T.S., Zecchetto, M. & da Silva, C.B. 2018 The scaling of the turbulent/non-turbulent interface at high Reynolds numbers. J. Fluid Mech. 843, 156179.CrossRefGoogle Scholar
Šístek, J., Kolář, V., Cirak, F. & Moses, P. 2012 Fluid–structure interaction and vortex identification. In Proceedings of the 18th Australasian Fluid Mechanics Conference. Australasian Fluid Mechanics Society.Google Scholar
Song, J., Lin, F., Liu, N., Lu, X.-Y. & Khomami, B. 2021 Direct numerical simulation of inertio-elastic turbulent Taylor–Couette flow. J. Fluid Mech. 926, A37.CrossRefGoogle Scholar
Tanahashi, M., Iwase, S. & Miyauchi, T. 2001 Appearance and alignment with strain rate of coherent fine scale eddies in turbulent mixing layer. J. Turbul. 2 (6), 118.CrossRefGoogle Scholar
Toms, B.A. 1948 Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proceedings of the 1st International Congress of Rheology, vol. II, pp. 135–141. North-Holland, Amsterdam.Google Scholar
Tsinober, A. 2009 An Informal Conceptual Introduction to Turbulence. Springer.CrossRefGoogle Scholar
Vaithianathan, T., Robert, A., Brasseur, J.G. & Collins, L.R. 2006 An improved algorithm for simulating three-dimensional, viscoelastic turbulence. J. Non-Newtonian Fluid Mech. 140 (1), 322.CrossRefGoogle Scholar
Valente, P.C., da Silva, C.B. & Pinho, F.T. 2014 The effect of viscoelasticity on the turbulent kinetic energy cascade. J. Fluid Mech. 760, 3962.CrossRefGoogle Scholar
Valente, P.C., da Silva, C.B. & Pinho, F.T. 2016 Energy spectra in elasto-inertial turbulence. Phys. Fluids 28, 075108.CrossRefGoogle Scholar
Vincent, A. & Meneguzzi, M. 1991 The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225, 120.CrossRefGoogle Scholar
Vincent, A. & Meneguzzi, M. 1994 The dynamics of vorticity tubes in homogeneous turbulence. J. Fluid Mech. 258, 245254.CrossRefGoogle Scholar
Vonlanthen, R. & Monkewitz, P.A. 2013 Grid turbulence in dilute polymer solutions: PEO in water. J. Fluid Mech. 730, 7698.CrossRefGoogle Scholar
Wang, Y., Gao, Y. & Liu, C. 2018 Galilean invariance of Rortex. Phys. Fluids 30 (11), 111701.CrossRefGoogle Scholar
Watanabe, T. 2024 Efficient enhancement of turbulent entrainment by small-scale shear instability. J. Fluid Mech. 988, A20.CrossRefGoogle Scholar
Watanabe, T. & Gotoh, T. 2014 Power-law spectra formed by stretching polymers in decaying isotropic turbulence. Phys. Fluids 26 (3), 035110.CrossRefGoogle Scholar
Watanabe, T., Mori, T., Ishizawa, K. & Nagata, K. 2024 Scale dependence of local shearing motion in decaying turbulence generated by multiple-jet interaction. J. Fluid Mech. 997, A14.CrossRefGoogle Scholar
Watanabe, T. & Nagata, K. 2022 Energetics and vortex structures near small-scale shear layers in turbulence. Phys. Fluids 34 (9), 095114.CrossRefGoogle Scholar
Watanabe, T. & Nagata, K. 2023 The response of small-scale shear layers to perturbations in turbulence. J. Fluid Mech. 963, A31.CrossRefGoogle Scholar
Watanabe, T., da Silva, C.B., Nagata, K. & Sakai, Y. 2017 Geometrical aspects of turbulent/non-turbulent interfaces with and without mean shear. Phys. Fluids 29 (8), 085105.CrossRefGoogle Scholar
Watanabe, T., Tanaka, K. & Nagata, K. 2020 Characteristics of shearing motions in incompressible isotropic turbulence. Phys. Rev. Fluids 5 (7), 072601.CrossRefGoogle Scholar
White, C.M. & Mungal, M.G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40 (1), 235256.CrossRefGoogle Scholar
Yamani, S., Raj, Y., Zaki, T.A., McKinley, G.H. & Bischofberger, I. 2023 Spatiotemporal signatures of elastoinertial turbulence in viscoelastic planar jets. Phys. Rev. Fluids 8 (6), 064610.CrossRefGoogle Scholar