Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T07:03:29.114Z Has data issue: false hasContentIssue false

Solitary and periodic gravity—capillary waves of finite amplitude

Published online by Cambridge University Press:  20 April 2006

J. K. Hunter
Affiliation:
Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523
J.-M. Vanden-Broeck
Affiliation:
Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523 Department of Mathematics and Mathematics Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706

Abstract

Two-dimensional solitary and periodic waves in water of finite depth are considered. The waves propagate under the combined influence of gravity and surface tension. The flow, the surface profile and the phase velocity are functions of the amplitude of the wave and the parameters l = λ/H and τ = TgH2. Here λ is the wavelength, H the depth, T the surface tension, ρ the density and g the acceleration due to gravity. For $\dot{\tau} >\frac{1}{3}$, large values of l and small values of the amplitude, the profile of the wave satisfies the Korteweg–de Vries equation approximately. However, for τ close to $\frac{1}{3}$ this equation becomes invalid. In the present paper a new equation valid for τ close to 1/3 is obtained. Moreover, a numerical scheme based on an integrodifferential-equation formulation is derived to solve the problem in the fully nonlinear case. Accurate solutions for periodic and solitary waves are presented. The numerical results show that the Korteweg–de Vries equation does not provide an accurate description of periodic gravity-capillary waves for $\tau < \frac{1}{3}$. In addition, it is shown that elevation solitary waves cannot be obtained as the continuous limit of periodic waves as the wavelength tends to infinity. Graphs of the results are included.

Type
Research Article
Copyright
© 1983 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T. B. 1982 Q. Appl. Maths 37, 183.
Byatt-Smith, J. G. B. & LONGUET-HIGGINS, M. S. 1976 Proc. R. Soc. Lond. A350, 175.
Chen, B. & Saffman, P. G. 1980 Stud. Appl. Maths 62, 95.
Cokelet, E. D. 1977 Phil. Trans. R. Soc. Lond. A286, 183.
Crapper, G. D. 1957 J. Fluid Mech. 2, 532.
Harrison, W. J. 1909 Proc. Lond. Math. Soc. 7, 107.
Hogan, S. J. 1980 J. Fluid Mech. 96, 417.
Hogan, S. J. 1981 J. Fluid Mech. 110, 381.
Hunter, J. K. & VANDEN-BROECK, J.-M. 1983 J. Fluid Mech. (in press).
Keller, J. B. 1948 Communs Pure Appl. Maths 1, 323.
Kinnersley, W. 1976 J. Fluid Mech. 77, 229.
Korteweg, D. J. & DE VRIES, G. 1895 Phil. Mag. 39, 422.
Laitone, E. V. 1960 J. Fluid Mech. 9, 430.
Longuet-Higgins, M. S. & Fenton, J. D. 1974 Proc. R. Soc. Lond. A340, 471.
Miles, J. W. 1980 Ann. Rev. Fluid Mech. 12, 11.
Nayfeh, A. H. 1970 J. Fluid Mech. 40, 671.
Pierson, W. J. & Fife, P. 1961 J. Geophys. Res. 66, 163.
Rayleigh, Lord 1876 Phil. Mag. 1, 257.
Rienecker, M. M. & Fenton, J. D. 1981 J. Fluid Mech. 104, 119.
Schwartz, L. W. 1974 J. Fluid Mech. 62, 553.
Schwartz, L. W. & Fenton, J. D. 1982 Ann. Rev. Fluid Mech. 14, 39.
Schwartz, L. W. & VANDEN-BROECK, J.-M. 1979 J. Fluid Mech. 95, 119.
Shinbrot, M. 1981 Q. Appl. Maths 39, 287.
Stokes, G. G. 1847 Trans. Camb. Phil. Soc. 8, 441.
Stokes, G. G. 1980 In Mathematical and Physical Papers, vol. 1, p. 314. Cambridge University Press.
Vanden-Broeck, J.-M. & Keller, J. B. 1980 J. Fluid Mech. 98, 161.
Vanden-Broeck, J.-M. & Schwartz, L. W. 1979 Phys. Fluids 22, 1868.
Vanden-Broeck, J.-M. & Shen, M. C. 1983 Z. angew. Math. Phys. 34, 112.
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley.
Wilton, J. R. 1915 Phil. Mag. 29, 688.
Witting, J. 1975 SIAM J. Appl. Maths 28, 700.