Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T20:47:04.297Z Has data issue: false hasContentIssue false

A sound extrapolation method for aeroacoustics far-field prediction in presence of vortical waves

Published online by Cambridge University Press:  08 May 2017

Siyang Zhong
Affiliation:
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
Xin Zhang*
Affiliation:
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
*
Email address for correspondence: aexzhang@ust.hk

Abstract

Off-surface integral solutions to an inhomogeneous wave equation based on acoustic analogy could suffer from spurious wave contamination when volume integrals are ignored for computation efficiency and vortical/turbulent gusts are convected across the integration surfaces, leading to erroneous far-field directivity predictions. Vortical gusts often exist in aerodynamic flows and it is inevitable their effects are present on the integration surface. In this work, we propose a new sound extrapolation method for acoustic far-field directivity prediction in the presence of vortical gusts, which overcomes the deficiencies in the existing methods. The Euler equations are rearranged to an alternative form in terms of fluctuation variables that contains the possible acoustical and vortical waves. Then the equations are manipulated to an inhomogeneous wave equation with source terms corresponding to surface and volume integrals. With the new formulation, spurious monopole and dipole noise produced by vortical gusts can be suppressed on account of the solenoidal property of the vortical waves and a simple convection process. It is therefore valid to ignore the volume integrals and preserve the sound properties. The resulting new acoustic inhomogeneous convected wave equations could be solved by means of the Green’s function method. Validation and verification cases are investigated, and the proposed method shows a capacity of accurate sound prediction for these cases. The new method is also applied to the challenging airfoil leading edge noise problems by injecting vortical waves into the computational domain and performing aeroacoustic studies at both subsonic and transonic speeds. In the case of a transonic airfoil leading edge noise problem, shocks are present on the airfoil surface. Good agreements of the directivity patterns are obtained compared with direct computation results.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amiet, R. K. 1975 Acoustic radiation from an airfoil in a turbulent stream. J. Sound Vib. 41 (4), 407420.Google Scholar
Ashcroft, G. & Zhang, X. 2003 Optimized prefactored compact schemes. J. Comput. Phys. 190 (2), 459477.Google Scholar
Blokhintzev, D. 1946 The propagation of sound in an inhomogeneous and moving medium I. J. Acoust. Soc. Am. 18 (2), 322328.Google Scholar
Bogey, C. & Bailly, C. 2004 A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194 (1), 194214.Google Scholar
Brentner, K. S. 1997 An efficient and robust method for predicting helicopter rotor high-speed impulsive noise. J. Sound Vib. 203 (1), 87100.Google Scholar
Brentner, K. S. & Farassat, F. 1998 Analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces. AIAA J. 36 (8), 13791386.CrossRefGoogle Scholar
Cook, A. W. 2007 Artificial fluid properties for large-eddy simulation of compressible turbulent mixing. Phys. Fluids 19 (5), 19.Google Scholar
Curle, N. 1955 The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. Lond. A 231 (1187), 505514.Google Scholar
Di Francescantonio, P. 1997 A new boundary integral formulation for the prediction of sound radiation. J. Sound Vib. 202 (4), 491509.CrossRefGoogle Scholar
Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C. & Poinsot, T. 1999 Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152 (2), 517549.Google Scholar
Evers, I. & Peake, N. 2002 On sound generation by the interaction between turbulence and a cascade of airfoils with non-uniform mean flow. J. Fluid Mech. 463, 2552.CrossRefGoogle Scholar
Farassat, F.2007 Derivation of formulations 1 and 1A of Farassat. NASA/TM-2007-214853.Google Scholar
Farassat, F. & Succi, G. P. 1980 A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations. J. Sound Vib. 71 (3), 399419.Google Scholar
Fattah, R., Angland, D. & Zhang, X. 2016 A priori grid quality estimation for high-order finite differencing. J. Comput. Phys. 315, 629643.Google Scholar
Ffowcs Williams, J. E. & Hawkings, D. L. 1969 Sound generation by turbulence and surfaces in arbitrary motion. Proc. R. Soc. Lond. A 264 (1151), 321342.Google Scholar
Ganz, U. W., Joppa, P. D., Patten, T. J. & Scharpf, D. F.1998 Boeing 18-inch fan rig broadband noise test. NASA Contractor Rep. CR-1998-208704.Google Scholar
Ghorbaniasl, G. & Lacor, C. 2012 A moving medium formulation for prediction of propeller noise at incidence. J. Sound Vib. 331 (1), 117137.Google Scholar
Gill, J., Zhang, X. & Joseph, P. 2013 Symmetric airfoil geometry effects on leading edge noise. J. Acoust. Soc. Am. 134 (4), 26692680.CrossRefGoogle ScholarPubMed
Gill, J., Zhang, X. & Joseph, P. 2015 Single velocity-component modeling of leading edge turbulence interaction noise. J. Acoust. Soc. Am. 137 (6), 32093220.Google Scholar
Gill, J., Zhang, X., Zhong, S. Y., Fattah, R. & Angland, D.2016 Airfoil–gust interactions in transonic flow. AIAA Paper 2016-2872.CrossRefGoogle Scholar
Gloerfelt, X., Bailly, C. & Juvé, D. 2003 Direct computation of the noise radiated by a subsonic cavity flow and application of integral methods. J. Sound Vib. 266 (1), 119146.CrossRefGoogle Scholar
Goldstein, M. E. 2003 A generalized acoustic analogy. J. Fluid Mech. 488, 315333.Google Scholar
Goldstein, M. E. 2005 On identifying the true sources of aerodynamic sound. J. Fluid Mech. 526, 337347.CrossRefGoogle Scholar
Goldstein, M. E. & Leib, S. J. 2008 The aeroacoustics of slowly diverging supersonic jets. J. Fluid Mech. 600, 291337.CrossRefGoogle Scholar
Hu, F. Q., Hussaini, M. Y. & Manthey, J. L. 1996 Low-dissipation and low-dispersion Runge–Kutta schemes for computational acoustics. J. Comput. Phys. 124 (1), 177191.Google Scholar
Karabasov, S. A., Afsar, M. Z., Hynes, T. P., Dowling, A. P., McMullan, W. A., Pokora, C. D., Page, G. J. & McGuirk, J. J. 2010 Jet noise: acoustic analogy informed by large eddy simulation. AIAA J. 48 (7), 13121325.Google Scholar
Kawai, S., Shankar, S. K. & Lele, S. K. 2010 Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows. J. Comput. Phys. 229 (5), 17391762.Google Scholar
Kovasznay, L. S. G. 1953 Turbulence in supersonic flow. J. Aero. Sci. 20 (10), 657682.Google Scholar
Lighthill, J. 1952 On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A 211, 546587.Google Scholar
Lockard, D. P.2002 A comparison of Ffowcs Williams–Hawkings solvers for airframe noise applications. AIAA Paper 2002-2580.CrossRefGoogle Scholar
Ma, Z. K. & Zhang, X. 2009 Numerical investigation of broadband slat noise attenuation with acoustic liner treatment. AIAA J. 47 (12), 28122820.CrossRefGoogle Scholar
Mendez, S., Shoeybi, M., Lele, S. K. & Moin, P. 2013 On the use of the Ffowcs Williams–Hawkings equation to predict far-field jet noise from large-eddy simulations. Intl J. Aeroacoust. 12 (1–2), 120.Google Scholar
Morfey, C. L. & Wright, M. C. M. 2007 Extensions of Lighthill’s acoustic analogy with application to computational aeroacoustics. Proc. R. Soc. Lond. A 463, 21012127.Google Scholar
Najafi-Yazdi, A., Brès, G. A. & Mongeau, L. 2011 An acoustic analogy formulation for moving sources in uniformly moving media. Proc. R. Soc. Lond. A 467, 144165.Google Scholar
Oberai, A. A., Roknaldin, F. & Hughes, T. J. R. 2002 Computation of trailing-edge noise due to turbulent flow over an airfoil. AIAA J. 40 (11), 22062216.Google Scholar
Obrist, D. & Kleiser, L.2007 The influence of spatial domain truncation on the prediction of acoustic far-fields. AIAA Paper 2007-3725.Google Scholar
Rahier, G., Huet, M. & Prieur, J. 2015 Additional terms for the use of Ffowcs Williams and Hawkings surface integrals in turbulent flows. Comput. Fluids 120, 158172.Google Scholar
Richards, S. K., Zhang, X., Chen, X. X. & Nelson, P. A. 2004 The evaluation of non-reflecting boundary conditions for duct acoustic computation. J. Sound Vib. 270 (3), 539557.Google Scholar
Samanta, A., Freund, J. B., Wei, M. J. & Lele, S. K. 2006 Robustness of acoustic analogies for predicting mixing-layer noise. AIAA J. 44 (11), 27802786.Google Scholar
Seo, J. H. & Moon, Y. J. 2007 Aerodynamic noise prediction for long-span bodies. J. Sound Vib. 306 (3), 564579.Google Scholar
Shur, M. L., Spalart, P. R. & Strelets, M. K. 2005 Noise prediction for increasingly complex jets. Part I: methods and tests. Intl J. Aeroacoust. 4 (3–4), 213246.CrossRefGoogle Scholar
Sinayoko, S., Agarwal, A. & Hu, Z. W. 2011 Flow decomposition and aerodynamic sound generation. J. Fluid Mech. 668, 335350.CrossRefGoogle Scholar
Spalart, P. R. & Shur, M. L. 2009 Variants of the Ffowcs Williams–Hawkings equation and their coupling with simulations of hot jets. Intl J. Aeroacoust. 8 (5), 477492.CrossRefGoogle Scholar
Spalart, P. R., Shur, M. L., Strelets, M. K. & Travin, A. K. 2011 Initial noise predictions for rudimentary landing gear. J. Sound Vib. 330 (17), 41804195.CrossRefGoogle Scholar
Wang, M., Lele, S. K. & Moin, P. 1996 Computation of quadrupole noise using acoustic analogy. AIAA J. 34 (11), 22472254.Google Scholar
Wang, X., Hu, Z. W. & Zhang, X. 2013 Aeroacoustic effects of high-lift wing slat track and cut-out system. Intl J. Aeroacoust. 12 (3), 283308.Google Scholar
Wright, M. C. & Morfey, C. L. 2015 On the extrapolation of acoustic waves from flow simulations with vortical out flow. Intl J. Aeroacoust. 14 (1–2), 217227.Google Scholar
Zhang, X. 2012 Aircraft noise and its nearfield propagation computations. Acta Mechanica Sin. 28 (4), 960977.CrossRefGoogle Scholar
Zhang, X., Chen, X. X., Morfey, C. L. & Nelson, P. A. 2004 Computation of spinning modal radiation from an unflanged duct. AIAA J. 42 (9), 17951801.CrossRefGoogle Scholar