Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T12:50:11.730Z Has data issue: false hasContentIssue false

Spanwise localized control for drag reduction in flow passing a cylinder

Published online by Cambridge University Press:  29 March 2021

Xuerui Mao*
Affiliation:
Faculty of Engineering, University of Nottingham, NottinghamNG7 2RD, UK
Bofu Wang
Affiliation:
Faculty of Engineering, University of Nottingham, NottinghamNG7 2RD, UK
*
Email address for correspondence: maoxuerui@sina.com

Abstract

Active and passive controls for drag reduction in flow around a cylinder are obtained by computing the sensitivity of drag with respect to surface velocity perturbations and roughness, respectively. Both controls are concentrated around the separation line and localized in the spanwise direction, producing suction effects to the separating boundary layers. In the wake, the control induces localized vertical displacements and streamwise stretches of the upper and lower vorticity sheets, and subsequently delay the vortex shedding and push the local pressure minimum away from the cylinder. Instead of suppressing separation and recirculation as commonly observed in two-dimensional controls, the present three-dimensional control extends the recirculation zone to produce a virtual surface converting the bluff body flow to a streamlined body flow. Through this mechanism, the control reduces drag by 20 % at maximum control velocity 2 % of the free-stream velocity (or momentum coefficient $10^{-4}$) at Reynolds number $Re=190$. The control is much more efficient than the previously tested spanwise uniform suction or periodic suction/blowing, both requiring maximum control velocity above 8 % (or momentum coefficient above $10^{-3}$) to achieve similar drag reduction effects. The power savings ratio, defined as the ratio of the control-reduced drag power and the maximum input power, is above 20, up to $Re=1000$, the highest Reynolds number considered in this work. This ratio reduces slightly to 17.8 when the control is simplified to spanwise localized suction around the separation lines in order to facilitate practical implementations.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bagheri, S., Mazzino, A. & Bottaro, A. 2012 Spontaneous symmetry breaking of a hinged flapping filament generates lift. Phys. Rev. Lett. 109 (15), 154502.CrossRefGoogle ScholarPubMed
Barkley, D., Blackburn, H.M. & Sherwin, S.J. 2008 Direct optimal growth analysis for timesteppers. Intl J. Numer. Meth. Fluids 57, 14351458.CrossRefGoogle Scholar
Barkley, D. & Henderson, R.D. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.CrossRefGoogle Scholar
Bearman, P. 1965 Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates. J. Fluid Mech. 21 (02), 241255.CrossRefGoogle Scholar
Bearman, P. & Harvey, J. 1993 Control of circular cylinder flow by the use of dimples. AIAA J. 31 (10), 17531756.CrossRefGoogle Scholar
Bearman, P. & Owen, J. 1998 Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines. J. Fluids Struct. 12, 123130.CrossRefGoogle Scholar
Blackburn, H.M. & Sherwin, S.J. 2004 Formulation of a Galerkin spectral element–Fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comput. Phys. 197 (2), 759778.CrossRefGoogle Scholar
Boujo, E. & Gallaire, F. 2014 Manipulating flow separation: sensitivity of stagnation points, separatrix angles and recirculation area to steady actuation. Proc. R. Soc. Lond. A 470, 20140365.Google ScholarPubMed
Brandt, L., Sipp, D., Pralits, J.O. & Marquet, O. 2011 Effects of base-flow variation in noise amplifiers: the flat-plate boundary layer. J. Fluid Mech. 687, 503528.CrossRefGoogle Scholar
Bueno-Orovio, A, Castro, C., Palacios, F. & Zuazua, E. 2012 Continuous adjoint approach for the Spalart–Allmaras model in aerodynamic optimization. AIAA J. 50, 631646.CrossRefGoogle Scholar
Choi, H., Jeon, W. & Kim, J. 2008 Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40, 113139.CrossRefGoogle Scholar
Chomaz, J.M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.CrossRefGoogle Scholar
Darekar, R.M. & Sherwin, S.J. 2001 Flow past a square-section cylinder with a wavy stagnation face. J. Fluid Mech. 426, 263295.CrossRefGoogle Scholar
Delaunay, Y. & Kaiktsis, L. 2001 Control of circular cylinder wakes using base mass transpiration. Phys. Fluids 13, 32853302.CrossRefGoogle Scholar
Fujisawa, N., Tanahashi, S. & Srinivas, K. 2005 Evaluation of pressure field and fluid forces on a circular cylinder with and without rotational oscillation using velocity data from PIV measurement. Meas. Sci. Technol. 16, 989996.CrossRefGoogle Scholar
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.CrossRefGoogle Scholar
Guercio, G., Cossu, C. & Pujals, G. 2014 a Optimal streaks in the circular cylinder wake and suppression of the global instability. J. Fluid Mech. 752, 572588.CrossRefGoogle Scholar
Guercio, G., Cossu, C. & Pujals, G. 2014 b Stabilizing effect of optimally amplified streaks in parallel wakes. J. Fluid Mech. 739, 3756.CrossRefGoogle Scholar
Henderson, R. 1997 Non-linear dynamics and pattern formation in turbulent wake transition. J. Fluid Mech. 352, 65112.CrossRefGoogle Scholar
Hwang, Y., Kim, J. & Choi, H. 2013 Stabilization of absolute instability in spanwise wavy two-dimensional wakes. J. Fluid Mech. 727, 346378.CrossRefGoogle Scholar
Jameson, A. & Ou, K. 2010 Optimization Methods in Computational Fluid Dynamics in Encyclopedia of Aerospace Engineering. John Wiley & Sons.Google Scholar
Karniadakis, G.E., Israeli, M. & Orszag, S.A. 1991 High–order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97 (2), 414443.CrossRefGoogle Scholar
Kim, J. & Choi, H. 2005 Distributed forcing of flow over a circular cylinder. Phys. Fluids 17, 033103.CrossRefGoogle Scholar
Lashgari, I., Tammisola, O., Citro, V., Juniper, M. & Brandt, L. 2014 The planar x-junction flow: stability analysis and control. J. Fluid Mech. 753, 128.CrossRefGoogle Scholar
Legendre, D., Laura, E. & Magnaudet, J. 2009 Influence of slip on the dynamics of two-dimensional wakes. J. Fluid Mech. 633, 437447.CrossRefGoogle Scholar
Lu, L., Qin, J., Teng, B. & Li, Y. 2011 Numerical investigations of lift suppression by feedback rotary oscillation of circular cylinder at low Reynolds number. Phys. Fluids 23, 033601.Google Scholar
Luchini, P. & Bottaro, A. 2014 Adjoint equations in stability analysis. Annu. Rev. Fluid Mech. 46, 493517.CrossRefGoogle Scholar
Mao, X. 2015 a Effects of base flow modifications on receptivity and non-normality: flow past a backward-facing step. J. Fluid Mech. 771, 229263.CrossRefGoogle Scholar
Mao, X. 2015 b Sensitivity of forces to wall transpiration in flow past an aerofoil. Proc. R. Soc. A 471, 20150618.CrossRefGoogle ScholarPubMed
Mao, X., Blackburn, H.M. & Sherwin, S.J. 2012 Optimal inflow boundary condition perturbations in steady stenotic flows. J. Fluid Mech. 705, 306321.CrossRefGoogle Scholar
Mao, X., Blackburn, H.M. & Sherwin, S.J. 2013 Calculation of global optimal initial and boundary perturbations for the linearised incompressible Navier–Stokes equations. J. Comput. Phys. 235, 258273.CrossRefGoogle Scholar
Mao, X., Blackburn, H.M. & Sherwin, S.J. 2015 Nonlinear optimal suppression of vortex shedding from a circular cylinder. J. Fluid Mech. 775, 241265.CrossRefGoogle Scholar
Meliga, P., Boujo, E., Pujals, G. & Gallaire, F. 2014 Sensitivity of aerodynamic forces in laminar and turbulent flow past a square cylinder. Phys. Fluids 26, 104101.CrossRefGoogle Scholar
Min, C. & Choi, H. 1999 Suboptimal feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech. 401, 123156.CrossRefGoogle Scholar
Mohammadi, B. & Pironneau, O. 2004 Shape optimisation in fluid mechanics. Annu. Rev. Fluid Mech. 36, 255279.CrossRefGoogle Scholar
Naito, H. & Fukagata, K. 2014 Control of flow around a circular cylinder for minimizing energy dissipation. Phys. Rev. E 90, 053008.CrossRefGoogle ScholarPubMed
Owen, J., Bearman, P. & Szewczyk, A. 2001 Passive control of VIV with drag reduction. J. Fluids Struct. 15 (3), 597605.CrossRefGoogle Scholar
Palkin, E., Hadziabdic, M., Mullyadzhanov, R. & Hanjalic, K. 2018 Control of flow around a cylinder by rotary oscillations at a high subcritical Reynolds number. J. Fluid Mech. 855, 236266.CrossRefGoogle Scholar
Park, H., Lee, D., Jeon, W., Hahn, S., Kim, J., Kim, J., Choi, J. & Choi, H. 2006 Drag reduction in flow over a two-dimensional bluff body with a blunt trailing edge using a new passive device. J. Fluid Mech. 563, 389414.CrossRefGoogle Scholar
Poncet, P., Hildebrand, R., Cottet, G. & Koumoutsakos, P. 2008 Spatially distributed control for optimal drag reduction of the flow past a circular cylinder. J. Fluid Mech. 599, 111120.CrossRefGoogle Scholar
Pralits, J.O., Brandt, L. & Giannetti, F. 2010 Instability and sensitivity of the flow around a rotating circular cylinder. J. Fluid Mech. 650, 513536.CrossRefGoogle Scholar
Schmid, P.J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Shiels, D. & Leonard, A. 2001 Investigation of a drag reduction on a circular cylinder in rotary oscillation. J. Fluid Mech. 431, 297322.CrossRefGoogle Scholar
Shinohara, K., Okuda, H., Ito, S., Nakajima, N. & Ida, M. 2008 Shape optimization using adjoint variable method for reducing drag in Stokes flow. Intl J. Numer. Meth. Fluids 58, 119159.CrossRefGoogle Scholar
Shtendel, T. & Seifert, A. 2014 Three-dimensional aspects of cylinder drag reduction by suction and oscillatory blowing. Intl J. Heat Fluid Flow 45, 109127.CrossRefGoogle Scholar
Shukla, R. & Arakeri, J. 2013 Minimum power consumption for drag reduction on a circular cylinder by tangential surface motion. J. Fluid Mech. 715, 597641.CrossRefGoogle Scholar
Tammisola, O. 2017 Optimal wavy surface to suppress vortex shedding using second-order sensitivity to shape changes. Eur. J. Mech. B/Fluids 62, 139148.CrossRefGoogle Scholar
Tammisola, O., Giannetti, F., Citro, V. & Juniper, M. 2014 Second-order perturbation of global modes and implications for spanwise wavy actuation. J. Fluid Mech. 755, 314335.CrossRefGoogle Scholar
Tokumaru, P. & Dimotakis, P. 1991 Rotary oscillation control of a cylinder wake. J. Fluid Mech. 224, 7790.CrossRefGoogle Scholar
Wang, Q. & Gao, J. 2013 The drag-adjoint field of a circular cylinder wake at Reynolds numbers 20, 100 and 500. J. Fluid Mech. 730, 145161.CrossRefGoogle Scholar
Wieselberger, C. 1921 Neuere feststellungen über die gestze des flüssigkeits- und luftwiderstands. Phys. Z. 22, 321328.Google Scholar
Williamson, C. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.CrossRefGoogle Scholar