Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T17:14:56.022Z Has data issue: false hasContentIssue false

Spatial optimal growth in three-dimensional compressible boundary layers

Published online by Cambridge University Press:  02 July 2012

David Tempelmann*
Affiliation:
Linné Flow Center, SeRC, KTH Mechanics, SE-100 44 Stockholm, Sweden
Ardeshir Hanifi
Affiliation:
Linné Flow Center, SeRC, KTH Mechanics, SE-100 44 Stockholm, Sweden Swedish Defence Research Agency, FOI, SE-164 90 Stockholm, Sweden
Dan S. Henningson
Affiliation:
Linné Flow Center, SeRC, KTH Mechanics, SE-100 44 Stockholm, Sweden
*
Email address for correspondence: david@mech.kth.se

Abstract

This paper represents a continuation of the work by Tempelmann et al. (J. Fluid Mech., vol. 646, 2010b, pp. 5–37) on spatial optimal growth in incompressible boundary layers over swept flat plates. We present an extension of the methodology to compressible flow. Also, we account for curvature effects. Spatial optimal growth is studied for boundary layers over both flat and curved swept plates with adiabatic and cooled walls. We find that optimal growth increases for higher Mach numbers. In general, extensive non-modal growth is observed for all boundary layer cases even in subcritical regions, i.e. where the flow is stable with respect to modal crossflow disturbances. Wall cooling, despite stabilizing crossflow modes, destabilizes disturbances of non-modal nature. Curvature acts similarly on modal as well as non-modal disturbances. Convex walls have a stabilizing effect on the boundary layer whereas concave walls have a destabilizing effect. The physical mechanisms of optimal growth in all studied boundary layers are found to be similar to those identified for incompressible flat-plate boundary layers.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Anderson, J. D. 2006 Hypersonic and High-Temperature Gas Dynamics, 2nd edn. AIAA.CrossRefGoogle Scholar
2. Andersson, P., Berggren, M. B. & Henningson, D. S. 1999 Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11, 134150.CrossRefGoogle Scholar
3. Andersson, P., Henningson, D. S. & Hanifi, A. 1998 On a stabilization procedure for the parabolic stability equations. J. Engng Math. 33 (3), 311332.CrossRefGoogle Scholar
4. Bertolotti, F. P. & Herbert, T. 1991 Analysis of the linear stability of compressible boundary layers using the PSE. Theor. Comput. Fluid Dyn. 3, 117124.Google Scholar
5. Bertolotti, F. P., Herbert, T. & Spalart, P. R. 1992 Linear and nonlinear stability of the Blasius boundary layer. J. Fluid Mech. 242, 441474.CrossRefGoogle Scholar
6. Bippes, H. 1999 Basic experiments on transition in three-dimensional boundary layers dominated by cross-flow instability. Prog. Aerosp. Sci. 35, 363412.Google Scholar
7. Bottaro, A. 2010 A receptive boundary layer. J. Fluid Mech. 646, 14.Google Scholar
8. Breuer, K. S. & Kuraishi, T. 1994 Transient growth in two- and three-dimensional boundary layers. Phys. Fluids 6 (6), 19831993.CrossRefGoogle Scholar
9. Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids 4, 16371650.CrossRefGoogle Scholar
10. Cooke, J. C. 1950 The boundary layer of a class of infinite yawed cylinders. Proc. Camb. Phil. Soc. 46, 645648.CrossRefGoogle Scholar
11. Corbett, P. & Bottaro, A. 2001 Optimal linear growth in swept boundary layers. J. Fluid Mech. 435, 123.CrossRefGoogle Scholar
12. Cossu, C., Chomaz, J.-M., Huerre, P. & Costa, M. 2000 Maximum spatial growth of Görtler vortices. Flow Turbul. Combust. 65, 369392.CrossRefGoogle Scholar
13. Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18 (4), 487488.Google Scholar
14. Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G. 2008 Nek5000 web page. http://nek5000.mcs.anl.gov.Google Scholar
15. Flügge, S. & Tresdell, C. 1959 Handbuch der Physik, vol. VIII/1, Strömungsmechanik I. Springer.Google Scholar
16. Gaponov, S. A. & Smorodskii, B. V. 2008 Linear stability of three-dimensional boundary layers. J. Appl. Mech. Tech. Phys. 49 (2), 157166.CrossRefGoogle Scholar
17. Graves, R. E. & Arrow, B. M. 1999 Bulk viscosity: past to present. J. Thermodyn. Heat Transfer 13 (3), 337342.CrossRefGoogle Scholar
18. Haj-Hariri, H. 1994 Characteristics analysis of the parabolized stability equations. Stud. Appl. Math. 92, 4153.CrossRefGoogle Scholar
19. Hanifi, A. & Henningson, D. S. 1998 The compressible inviscid algebraic instability for streamwise independent disturbances. Phys. Fluids 10 (8), 17841786.CrossRefGoogle Scholar
20. Hanifi, A., Henningson, D. S., Hein, S., Bertolotti, F. P & Simen, M. 1994 Linear non-local instability analysis: the linear NOLOT code. FFA TN 1994-54.Google Scholar
21. Hanifi, A., Schmid, P. J. & Henningson, D. S. 1996 Transient growth in compressible boundary layer flow. Phys. Fluids 8 (3), 826837.CrossRefGoogle Scholar
22. Kufner, E. 1995 Numerische Untersuchungen der Strömungsinstabilitäten an spitzen und stumpfen Kegeln bei hypersonischen Machzahlen. PhD thesis, DLR Göttingen.Google Scholar
23. Kurian, T., Fransson, J. H. M. & Alfredsson, P. H. 2011 Boundary layer receptivity to free stream turbulence and surface roughness over a swept flat plate. Phys. Fluids 23, 034107.Google Scholar
24. Landahl, M. T. 1980 A note on algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.Google Scholar
25. Levin, O. & Henningson, D. S. 2003 Exponential vs algebraic growth and transition prediction in boundary layer flow. Flow Turbul. Combust. 70, 183210.CrossRefGoogle Scholar
26. Luchini, P. 2000 Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289309.CrossRefGoogle Scholar
27. Mack, L. M. 1965 Computation of the stability of the laminar compressible boundary layer. Meth. Comput. Phys. 4, 247.Google Scholar
28. Mack, L. M. 1969 Boundary layer stability theory. JPL Rep. 900-277. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.Google Scholar
29. Mack, L. M. 1984 Boundary-layer linear stability theory. AGARD Rep. 709.Google Scholar
30. Mack, L. M. 1986 Boundary layer stability analysis for sharp cones at zero angle-of-attack. AFWAL-TR-86-3022, Flight Dynamics Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, Ohio, USA.Google Scholar
31. Pralits, J. O., Airiau, C., Hanifi, A. & Henningson, D. S. 2000 Sensitivity analysis using adjoint parabolized stability equations for compressible flows. Flow Turbul. Combust. 65, 321346.CrossRefGoogle Scholar
32. Reddy, S. C. & Henningson, D. S. 1993 Energy growth in viscous channel flow. J. Fluid Mech. 252, 209238.CrossRefGoogle Scholar
33. Reibert, M. S., Saric, W. S., Carillo, R. B. & Chapman, K. L. 1996 Experiments in nonlinear saturation of stationary cross-flow vortices in a swept-wing boundary layer. AIAA Paper 96-0184.Google Scholar
34. Reshotko, E. & Tumin, A. 2004 a Optimal disturbances in the boundary layer over a sphere. AIAA Paper 2004-2241.Google Scholar
35. Reshotko, E. & Tumin, A. 2004b Role of transient growth in roughness-induced transition. AIAA J. 42 (4), 766770.Google Scholar
36. Schrader, L. U., Brandt, L. & Henningson, D. S. 2009 Receptivity mechanisms in three-dimensional boundary layer flows. J. Fluid Mech. 618, 209241.CrossRefGoogle Scholar
37. Simen, M. 1992 Local and non-local stability theory of spatially varying flows. In Instability, Transitions, and Turbulence, pp. 181195. Springer.Google Scholar
38. Tempelmann, D. 2009 Stability and receptivity of three-dimensional boundary layers. TRITA-MEK 2009:19, licentiate thesis, KTH Stockholm.Google Scholar
39. Tempelmann, D., Hanifi, A. & Henningson, D. S. 2010 a Optimal disturbances and receptivity in three-dimensional boundary layers. In Proc. 5th European Conference on Computational Fluid Dynamics ECCOMAS CFD (ed. J. C. F. Pereira & A. Sequeira) Lisbon, Portugal, 14–17 June 2010.Google Scholar
40. Tempelmann, D., Hanifi, A. & Henningson, D. S. 2010b Spatial optimal growth in three-dimensional boundary layers. J. Fluid Mech. 646, 537.CrossRefGoogle Scholar
41. Ting, L. 1965 On the initial conditions for boundary layer equations. J. Math. Phys. 44, 353367.CrossRefGoogle Scholar
42. Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.CrossRefGoogle ScholarPubMed
43. Tumin, A. & Reshotko, E. 2001 Spatial theory of optimal disturbances in boundary layers. Phys. Fluids 13 (7).Google Scholar
44. Tumin, A. & Reshotko, E. 2003 Optimal disturbances in compressible boundary layers. AIAA Paper 2003-0792.Google Scholar
45. Weideman, J. A. & Reddy, S. C. 2000 A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. (TOMS) 26 (4).Google Scholar
46. Zuccher, S., Tumin, A. & Reshotko, E. 2006 Parabolic approach to optimal perturbations in compressible boundary layers. J. Fluid Mech. 556, 189216.Google Scholar
47. Zurigat, Y. H., Nayfeh, A. H. & Masad, J. A. 1990 Effect of pressure gradient on the stability of compressible boundary layers. AIAA Paper 90-1451.Google Scholar