Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T01:34:06.621Z Has data issue: false hasContentIssue false

Spatially localized multi-scale energy transfer in turbulent premixed combustion

Published online by Cambridge University Press:  04 June 2018

J. Kim
Affiliation:
Center for Turbulence Research, Stanford University, Stanford, CA 94305-3024, USA
M. Bassenne
Affiliation:
Center for Turbulence Research, Stanford University, Stanford, CA 94305-3024, USA
C. A. Z. Towery
Affiliation:
Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
P. E. Hamlington
Affiliation:
Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
A. Y. Poludnenko
Affiliation:
Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA
J. Urzay*
Affiliation:
Center for Turbulence Research, Stanford University, Stanford, CA 94305-3024, USA
*
Email address for correspondence: jurzay@stanford.edu

Abstract

A three-dimensional wavelet multi-resolution analysis of direct numerical simulations of a turbulent premixed flame is performed in order to investigate the spatially localized spectral transfer of kinetic energy across scales in the vicinity of the flame front. A formulation is developed that addresses the compressible spectral dynamics of the kinetic energy in wavelet space. The wavelet basis enables the examination of local energy spectra, along with inter-scale and subfilter-scale (SFS) cumulative energy fluxes across a scale cutoff, all quantities being available either unconditioned or conditioned on the local instantaneous value of the progress variable across the flame brush. The results include the quantification of mean spectral values and associated spatial variabilities. The energy spectra undergo, in most locations in the flame brush, a precipitous drop that starts at scales of the same order as the characteristic flame scale and continues to smaller scales, even though the corresponding decrease of the mean spectra is much more gradual. The mean convective inter-scale flux indicates that convection increases the energy of small scales, although it does so in a non-conservative manner due to the high aspect ratio of the grid, which limits the maximum scale level that can be used in the wavelet transform, and to the non-periodic boundary conditions, which exchange energy through surface forces, as explicitly elucidated by the formulation. The mean pressure-gradient inter-scale flux extracts energy from intermediate scales of the same order as the characteristic flame scale, and injects energy in the smaller and larger scales. The local SFS-cumulative contribution of the convective and pressure-gradient mechanisms of energy transfer across a given cutoff scale imposed by a wavelet filter is analysed. The local SFS-cumulative energy flux is such that the subfilter scales upstream from the flame always receive energy on average. Conversely, within the flame brush, energy is drained on average from the subfilter scales by convective and pressure-gradient effects most intensely when the filter cutoff is larger than the characteristic flame scale.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA.

References

Addison, P. S. 2002 The Illustrated Wavelet Transform Handbook. CRC Press.Google Scholar
Aldredge, R. C. & Williams, F. A. 1991 Influence of wrinkled premixed-flame dynamics on large-scale, low-intensity turbulent flow. J. Fluid Mech. 228, 487511.Google Scholar
Aluie, H. 2013 Scale decomposition in compressible turbulence. Physica D 247, 5465.Google Scholar
Aluie, H., Li, S. & Li, H. 2012 Conservative cascade of kinetic energy in compressible turbulence. Astrophys. J. Lett. 751, 16.CrossRefGoogle Scholar
Bassenne, M., Urzay, J., Schneider, K. & Moin, P. 2017 Extraction of coherent clusters and grid adaptation in particle-laden turbulence. Phys. Rev. Fluids 2, 054301.CrossRefGoogle Scholar
Batchelor, G. K. 1959 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Brasseur, J. & Wang, Q. 1995 Structural evolution of intermittency and anisotropy at different scales analyzed using three-dimensional wavelet transforms. Phys. Fluids. 4, 25382554.Google Scholar
Bockhorn, H., Froölich, J. & Schneider, K. 1999 An adaptive two-dimensional wavelet–vaguelette algorithm for the computation of flame balls. Combust. Theor. Model. 3, 177198.Google Scholar
Cramer, M. S. 2012 Numerical estimates for the bulk viscosity of ideal gases. Phys. Fluids 24, 066102.Google Scholar
Craya, A.1958 Contribution à l’analyse de la turbulence associée à des vitesses moyennes. P.S.T. Ministère de l’Air, No. 345.Google Scholar
Daubechies, I. 1992 Ten Lectures on Wavelets. SIAM.Google Scholar
Daubechies, I. 1993 Orthonormal bases of compactly supported wavelets: II. Variations on a theme. SIAM J. Math. Anal. 24, 499519.Google Scholar
Deriaz, E., Farge, M. & Schneider, K. 2010 Craya decomposition using compactly supported biorthogonal wavelets. Appl. Comput. Harmon. Anal. 491, 267284.CrossRefGoogle Scholar
Dunn, S. C. & Morrison, J. F. 2003 Anisotropy and energy flux in wall turbulence. J. Fluid Mech. 491, 353378.Google Scholar
Farge, M. 1992 Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395458.Google Scholar
Grossmann, A. & Morlet, J. 1984 Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15, 723736.Google Scholar
Jones, S. & Lichtl, A. 2015 GPU’s to Mars: full-scale simulation of space-X’s Mars rocket. In GPU Technology Conference, San Jose CA. Nvidia.Google Scholar
Kida, S. & Orszag, S. A. 1990 Energy and spectral dynamics in forced compressible turbulence. J. Sci. Comput. 5, 85125.Google Scholar
Kolla, H., Hawkes, E. R., Kerstein, A. R., Swaminathan, N. & Chen, J. H. 2014 On velocity and reactive scalar spectra in turbulent premixed flames. J. Fluid Mech. 754, 456487.Google Scholar
Hamlington, P. E., Poludnenko, A. Y. & Oran, E. S. 2011 Interactions between turbulence and flames in premixed reacting flows. Phys. Fluids 23, 125111.Google Scholar
Iima, M. & Toh, S. 1995 Wavelet analysis of the energy transfer caused by convective terms: application to the Burgers shock. Phys. Rev. E 52, 61896201.Google Scholar
MacArt, J. F., Grenga, T. & Mueller, M. E. 2018 Effects of combustion heat release on velocity and scalar statistics in turbulent premixed jet flames at low and high Karlovitz numbers. Combust. Flame 191, 468485.CrossRefGoogle Scholar
Mallat, S. G. 1989 A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674693.Google Scholar
Mallat, S. G. 2008 A Wavelet Tour of Signal Processing. Academic Press.Google Scholar
Meneveau, C. 1990 Analysis of turbulence in the orthonormal wavelet representation. In CTR Manuscript #120, pp. 153. Center for Turbulence Research, Stanford University & NASA Ames Research Center.Google Scholar
Meneveau, C. 1991 Analysis of turbulence in the orthonormal wavelet representation. J. Fluid Mech. 232, 469520.Google Scholar
Moyal, J. E. 1952 The spectra of turbulence in a compressible fluid; eddy turbulence and random noise. Math. Proc. Camb. Phil. Soc. 48, 329344.CrossRefGoogle Scholar
Livescu, D., Jaberi, F. A. & Madnia, C. K. 2002 The effects of heat release on the energy exchange in reacting turbulent shear flow. J. Fluid Mech. 450, 3566.CrossRefGoogle Scholar
O’Brien, J., Towery, C. A. Z., Hamlington, P. E., Ihme, M., Poludnenko, A. Y. & Urzay, J. 2017 The cross-scale physical-space transfer of kinetic energy in turbulent premixed flames. Proc. Combust. Inst. 36, 19671975.CrossRefGoogle Scholar
O’Brien, J., Urzay, J., Ihme, M., Moin, P. & Saghafian, A. 2014a Subgrid-scale backscatter in reacting and inert supersonic hydrogen–air turbulent mixing layers. J. Fluid Mech. 743, 554584.Google Scholar
O’Brien, J., Urzay, J., Poludnenko, A. Y., Hamlington, P. E. & Ihme, M. 2014b Counter-gradient subgrid-scale transport and reverse-cascade phenomena in turbulent deflagrations. In Proceedings of the Summer Program, pp. 147157. Center for Turbulence Research, Stanford University.Google Scholar
Perrier, V., Philipovitch, T. & Basdevant, C. Wavelet spectra compared to Fourier spectra. J. Math. Phys. 36, 15061519.CrossRefGoogle Scholar
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.CrossRefGoogle Scholar
Petersen, M. R. & Livescu, D. 2010 Forcing for statistically stationary compressible isotropic turbulence. Phys. Fluids 22, 116101.Google Scholar
Poludnenko, A. Y. 2015 Pulsating instability and self-acceleration of fast turbulent flames. Phys. Fluids 27, 014106.Google Scholar
Poludnenko, A. Y. & Oran, E. S. 2010 The interaction of high-speed turbulence with flames: global properties and internal flame structure. Combust. Flame 157, 9951011.CrossRefGoogle Scholar
Pouransari, H., Kolla, H., Chen, J. H. & Mani, A. 2017 Spectral analysis of energy transfer in turbulent flows laden with heated particles. J. Fluid Mech. 813, 11561175.CrossRefGoogle Scholar
Prosser, R. & Cant, R. S. 2011 Wavelet methods in computational combustion. In Turbulent Combustion Modeling, pp. 331351. Springer.Google Scholar
Ruppert-Felsot, J., Farge, M. & Petitjeans, P. 2009 Wavelet tools to study intermittency: application to vortex bursting. J. Fluid Mech. 636, 427453.Google Scholar
Sagaut, P. & Cambon, C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.Google Scholar
Sakurai, T., Yoshimatsu, K., Schneider, K., Farge, M., Morishita, K. & Ishihara, T. 2017 Coherent structure extraction in turbulent channel flow using boundary adapted wavelets. J. Turbul. 18, 352372.Google Scholar
Schneider, K. & Vasilyev, O. 2010 Wavelet methods in computational fluid dynamics. Annu. Rev. Fluid Mech. 42, 473503.Google Scholar
Strang, G. & Nguyen, N. 1996 Wavelets and Filter Banks. SIAM.Google Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.Google Scholar
Towery, C. A. Z., Poludnenko, A. Y., Urzay, J., O’Brien, J., Ihme, M. & Hamlington, P. E. 2016 Spectral kinetic-energy transfer in turbulent premixed reacting flows. Phys. Rev. E 93, 053115.Google Scholar
Urzay, J., Doostmohammadi, A. & Yeomans, J. M. 2017 Multi-scale statistics of turbulence motorized by active matter. J. Fluid Mech. 822, 762773.Google Scholar
Urzay, J. 2018 Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 50, 593627.Google Scholar
Veynante, D. & Poinsot, T. 1997 Effects of pressure gradients on turbulent premixed flames. J. Fluid Mech. 353, 83114.CrossRefGoogle Scholar
Wang, H., Hawkes, E. R., Chen, J. H., Zhou, B., Li, Z. & Aldén, M. 2013 Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame – an analysis of flame stretch and flame thickening. J. Fluid. Mech. 815, 511536.Google Scholar
Wang, J., Yang, Y., Shi, Y., Xiao, Z., He, X. T. & Chen, S. 2013 Cascade of kinetic energy in three-dimensional compressible turbulence. Phys. Rev. Lett. 110, 214505.CrossRefGoogle ScholarPubMed