Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T07:41:49.423Z Has data issue: false hasContentIssue false

Stability of Taylor–Dean flow in a small gap between rotating cylinders

Published online by Cambridge University Press:  26 April 2006

Falin Chen
Affiliation:
Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan 10764, ROC
M. H. Chang
Affiliation:
Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan 10764, ROC

Abstract

A linear stability analysis has been implemented for Taylor–Dean flow. a viscous flow between rotating concentric cylinders with a pressure gradient acting in the azimuthal direction. The analysis is made under the assumption that the gap spacing between the cylinders is small compared to the mean radius (small-gap approximation). A parametric study covering wide ranges of μ. the ratio of angular velocity of the outer cylinder to that of inner cylinder. and β. a parameter characterizing the ratio of representative pumping and rotation velocities is conducted. For − 1 [les ] μ < 1, results show that non-axisymmetric instability modes prevail in a wide range of β. The most stable state is found to occur within − 3.9 < β < − 3.6 for μ < 0.3 and at − β ≈ 1.59μ + 3.5 for μ > 0.3. The most stable state is always accompanied by a shortest critical axial wavelength. Instability modes with different azimuthal wavenumber have similar stability characteristics because the basic state is either close to or at the most stable situation. This similarity is absent from either Taylor or Dean flow.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brewster, D. B., Grosberg, P. & Nissan, A. H. 1959 Proc. R. Soc. Lond. A 251, 76.
Brewster, D. B. & Nissan, A. H. 1958 Chem. Eng. Sic. 7, 215.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability, Clarendon.
Chen, K. S., Ku, A. C., Chan, T. M. & Yang, S. Z. 1990 J. Fluid Mech. 213, 149.
Couette, M. 1890 Ann. Chim. Phys. 21, 433.
Dean, W. R. 1928 Proc. R. Soc. Lond. A 121, 402.
Diprima, R. C. 1955 Q. Appl. Maths 13, 55.
Diprima, R. C. 1959 J. Fluid Mech. 6, 462.
Hammerlin, G. 1958 Arch. Rat. Mech. Anal 1, 212.
Harris, D. L. & Reid, W. H 1964 J. Fluid Mech. 20, 95.
Hughes, T. H. & Reid, W. H. 1964 Z. Angew. Math. Phys. 15, 573.
Kachoyan, B. J. 1987 Z. Angew. Math. Phys. 38, 905.
Komada, A. Y. 1983 Kawasaki Steel Tech. Rep. vol. 8, p. 17.
Krueger, E. R., Gross, A. & DiPrima, R. C. 1966 J. Fluid Mech. 24, 521.
Kurzweg, U. H. 1963 Z. Angew. Math. Phys. 14, 380.
Meister, B. 1962 Z. Angew. Math. Phys. 13, 83.
Mutabazi, I., Hegseth, J. J., Andereck, C. D. & Wesfreid, J. E. 1988 Phys. Rev. A 38, 4752
Mutabazi, I., Hegseth, J. J., Andereck, C. D. & Wesfreid, J. E. 1990 Phys. Rev. Let. 64, 1729.
Mutabazi, I., Normand, C., Peerhossaini, H. & Wesfreid, J. E. 1989 Phys. Rev. A 39, 763.
Mutabazi, I., Wesfreid, J. E., Hegseth, J. J. & Andereck, C. D. 1991 Eur. J. Mech. B/ Fluids 10, 239.Google Scholar
Nabatame, M. 1984 Nippon Kokan Tech. Rep. (Overseas) vol. 40, p. 9.
Powell, M. J. D. 1970 Numerical Methods for Nonlinear Algebraic Equations (ed. P. H. Rabinowitz). Gordon and Breach.
Raney, D. C. & Chang, T. S. 1971 Z. Angew. Math. Phys. 22, 680.
Rayleigh, Lord 1916 Proc. R. Soc. Lond. A 93, 148.
Re1id, W. H. 1958 Proc. R. Soc. Lond. A 244, 186.
Sparrow, E. M. & Lin, S. H. 1965 Phys. Fluids 8, 229.
Sparrow, E. M, Munro, W. D. & Jonsson, V. K. 1964 J. Fluid Mech. 20, 35.
Taylor, G. I. 1923 Phil. Trans. R. Soc. Lond. A 223, 289.
Vohr, J. H. 1968 Trans. ASME F: J. Lubrication Tech. 11, 285.Google Scholar
Walowit, J., Tsao, S. & DiPrima, R. C. 1964 Trans. ASME E: J. Appl. Mech. 86, 585.