Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T18:00:59.406Z Has data issue: false hasContentIssue false

Stability of thin fluid films characterised by a complex form of effective disjoining pressure

Published online by Cambridge University Press:  01 March 2018

Michael-Angelo Y.-H. Lam
Affiliation:
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
Linda J. Cummings
Affiliation:
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
Lou Kondic*
Affiliation:
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
*
Email address for correspondence: kondic@njit.edu

Abstract

We discuss instabilities of fluid films of nanoscale thickness, with a particular focus on films where the destabilising mechanism allows for linear instability, metastability, and absolute stability, depending on the mean film thickness. Our study is motivated by nematic liquid crystal films; however, we note that similar instability mechanisms, and forms of the effective disjoining pressure, appear in other contexts, such as the well-studied problem of polymeric films on two-layered substrates. The analysis is carried out within the framework of the long-wave approximation, which leads to a fourth-order nonlinear partial differential equation for the film thickness. Within the considered formulation, the nematic character of the film leads to an additional contribution to the disjoining pressure, changing its functional form. This effective disjoining pressure is characterised by the presence of a local maximum for non-vanishing film thickness. Such a form leads to complicated instability evolution that we study by analytical means, including the application of marginal stability criteria, and by extensive numerical simulations that help us develop a better understanding of instability evolution in the nonlinear regime. This combination of analytical and computational techniques allows us to reach novel understanding of relevant instability mechanisms, and of their influence on transient and fully developed fluid film morphologies. In particular, we discuss in detail the patterns of drops that form as a result of instability, and how the properties of these patterns are related to the instability mechanisms.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajaev, V. S. & Willis, D. A. 2003 Thermocapillary flow and rupture in films of molten metal on a substrate. Phys. Fluids 15, 31443150.Google Scholar
Ausserré, D. & Buraud, J.-L. 2011 Late stage spreading of stratified liquids: theory. J. Chem. Phys. 134, 114706.Google Scholar
Cazabat, A. M., Delabre, U., Richard, C. & Sang, Y. Yip Cheung 2011 Experimental study of hybrid nematic wetting films. Adv. Colloid Interface Sci. 168, 2939.Google Scholar
Churaev, N. V. 1995 Contact angles and surface forces. Adv. Colloid Interface Sci. 58, 87118.CrossRefGoogle Scholar
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 11311198.Google Scholar
Delabre, U., Richard, C. & Cazabat, A. M. 2009 Thin nematic films on liquid substrates. J. Phys. Chem. B 113, 36473652.Google Scholar
Delabre, U., Richard, C., Guéna, G., Meunier, J. & Cazabat, A. M. 2008 Nematic pancakes revisited. Langmuir 24, 39984006.Google Scholar
Diez, J. A. & Kondic, L. 2007 On the breakup of fluid films of finite and infinite extent. Phys. Fluids 19, 072107.Google Scholar
van Effenterre, D., Ober, R., Valignat, M. P. & Cazabat, A. M. 2001 Binary separation in very thin nematic films: thickness and phase coexistence. Phys. Rev. Lett. 87, 125701.Google Scholar
van Effenterre, D. & Valignat, M. P. 2003 Stability of thin nematic films. Eur. Phys. J. E 12, 367372.Google Scholar
Favazza, C., Trice, J., Kalyanaraman, R. & Sureshkumar, R. 2007 Self-organized metal nanostructures through laser-interference driven thermocapillary convection. Appl. Phys. Lett. 91, 043105.Google Scholar
Fowlkes, J. D., Kondic, L., Diez, J. & Rack, P. D. 2011 Self-assembly versus directed assembly of nanoparticles via pulsed laser induced dewetting of patterned metal films. Nano Lett. 11, 24782485.CrossRefGoogle ScholarPubMed
Glasner, K. B. & Witelski, T. P. 2003 Coarsening dynamics of dewetting films. Phys. Rev. E 67, 016302.Google ScholarPubMed
Herminghaus, S., Jacobs, K., Mecke, K., Bischof, J., Fery, A., Ibn-Elhaj, M. & Schlagowski, S. 1998 Spinodal dewetting in liquid crystal and liquid metal films. Science 282, 916919.Google Scholar
Huerre, P. 1988 Propagation in Systems Far from Equilibrium (ed. Wesfreid, J. E., Brand, H. R., Manneville, P., Albinet, G. & Boccara, N.). Springer.Google Scholar
Huerre, P. & Rossi, M. 1998 Hydrodynamic instabilities in open flows. In Hydrodynamics and Nonlinear Instabilities (ed. Godréche, C. & Manneville, P.). Cambridge University Press.Google Scholar
Inoue, M., Yoshino, K., Moritake, H. & Toda, K. 2002 Evaluation of nematic liquid-crystal director-orientation using shear horizontal wave propagation. J. Appl. Phys. 95, 27982802.Google Scholar
Israelachvili, J. N. 1992 Intermolecular and Surface Forces, 2nd edn. Academic Press.Google Scholar
Jacobs, K., Seemann, R. & Herminghaus, S. 2008 Stability and Dewetting of Thin Liquid Films. pp. 243265. World Scientific.Google Scholar
Lam, M. A., Cummings, L. J., Lin, T.-S. & Kondic, L. 2014 Modeling flow of nematic liquid crystal down an incline. J Engng Maths 94, 97113.CrossRefGoogle Scholar
Lam, M. A., Cummings, L. J., Lin, T.-S. & Kondic, L. 2015 Three-dimensional coating flow of nematic liquid crystal on an inclined substrate. Eur. J. Appl. Maths 25, 647669.CrossRefGoogle Scholar
Lam, M.-A. Y.-H., Cummings, L. & Kondic, L.2018 Computing three dimensional generalized thin film equation on GPUs (in preparation).Google Scholar
Leslie, F. M. 1979 Theory of flow phenomena in liquid crystals. Adv. Liq. Cryst. 4, 181.Google Scholar
Lin, T.-S., Cummings, L. J., Archer, A. J., Kondic, L. & Thiele, U. 2013a Note on the hydrodynamic description of thin nematic films: strong anchoring model. Phys. Fluids 25, 082102.Google Scholar
Lin, T.-S. & Kondic, L. 2010 Thin films flowing down inverted substrates: two dimensional flow. Phys. Fluids 22, 052105.CrossRefGoogle Scholar
Lin, T.-S., Kondic, L. & Filippov, A. 2012 Thin films flowing down inverted substrates: three-dimensional flow. Phys. Fluids 24, 022105.Google Scholar
Lin, T.-S., Kondic, L., Thiele, U. & Cummings, L. J. 2013b Modeling spreading dynamics of liquid crystals in three spatial dimensions. J. Fluid Mech. 729, 214230.Google Scholar
Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. 2010 Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686.CrossRefGoogle Scholar
Mechkov, S., Cazabat, A. M. & Oshanin, G. 2009 Post-Tanner spreading of nematic droplets. J. Phys.: Condens. Matter 21, 464134.Google Scholar
Mitlin, V. S. 1993 Dewetting of solid surface: analogy with spinodal decomposition. J. Colloid Interface Sci. 156, 491497.CrossRefGoogle Scholar
Münch, A. 2005 Dewetting rates of thin liquid films. J. Phys.: Condens. Matter 17, 309318.Google Scholar
Palffy-Muhoray, P. 2012 The diverse world of liquid crystals. Phys. Today 60, 5460.Google Scholar
Poulard, C. & Cazabat, A. M. 2005 Spontaneous spreading of nematic liquid crystals. Langmuir 21, 62706276.Google Scholar
Poulard, C., Voué, M., De Coninck, J. & Cazabat, A. M. 2006 Spreading of nematic liquid crystals on hydrophobic substrates. Colloids Surf. A: Physicochem. Engng Aspects 282, 240246.CrossRefGoogle Scholar
Rey, A. D. 2000 The Neumann and Young equations for nematic contact lines. Liq. Cryst. 27, 195200.Google Scholar
Rey, A. D. 2008 Generalized Young–Laplace equation for nematic liquid crystal interfaces and its application to free-surface defects. Mol. Cryst. Liq. Cryst. 369, 6374.CrossRefGoogle Scholar
Rey, A. D. & Denn, M. M. 2002 Dynamical phenomena in liquid-crystalline materials. Annu. Rev. Fluid Mech. 34, 233266.Google Scholar
Ruffino, F., Pugliara, A., Carria, E., Romano, L, Bongiorno, C., Spinella, C. & Grimaldi, M. G. 2012 Novel approach to the fabrication of Au/silica coreshell nanostructures based on nanosecond laser irradiation of thin Au films on Si. Nanotechnology 33, 045601.Google Scholar
van Saarloos, W. 2003 Front propagation into unstable states. Phys. Rep. 386, 29222.Google Scholar
Saritaş, S., Özen, E. S. & Aydinli, A. 2013 Laser induced spinodal dewetting of Ag thin films for photovoltaic applications. J. Optoelectron. Adv. Mater. 15, 1013.Google Scholar
Schlagowski, S., Jacobs, K. & Herminghaus, S. 2002 Nucleation-induced undulative instability in thin films of nCB liquid crystals. Europhys. Lett. 57, 519525.Google Scholar
Schulz, B & Bahr, C. 2011 Surface structure of ultrathin smectic films on silicon substrates: pores and islands. Phys. Rev. E 83, 041710.Google Scholar
Seemann, R., Herminghaus, S. & Jacobs, K. 2001a Dewetting patterns and molecular forces: a reconciliation. Phys. Rev. Lett. 86, 55345537.CrossRefGoogle ScholarPubMed
Seemann, R., Herminghaus, S. & Jacobs, K. 2001b Gaining control of pattern formation of dewetting liquid films. J. Phys.: Condens. Matter 13, 49254938.Google Scholar
Seric, I, Afkhami, S. & Kondic, L. 2014 Interfacial instability of thin ferrofluid films under a magnetic field. J. Fluid Mech. Rapids 755, R1 1–12.Google Scholar
Sharma, A. & Verma, R. 2004 Pattern formation and dewetting in thin films of liquids showing complete macroscale wetting: from ‘pancakes’ to ‘swiss cheese’. Langmuir 20, 1033710345.Google Scholar
Starov, V. M. 1992 Equilibrium and hysteresis contact angles. Adv. Colloid Interface Sci. 39, 147173.CrossRefGoogle Scholar
Thiele, U., Archer, A. J. & Pismen, L. M. 2016 Gradient dynamics models for liquid films with soluble surfactant. Phys. Rev. Fluids 1, 083903.Google Scholar
Thiele, U., Neuffer, K., Pomeau, Y. & Velarde, M. G. 2002 On the importance of nucleation solutions for the rupture of thin liquid films. Colloid Surf. A 206, 135155.Google Scholar
Thiele, U., Velarde, M. G., Neuffer, K. & Pomeau, Y. 2001 Film rupture in the diffuse interface model coupled to hydrodynamics. Phys. Rev. E 64, 031602.Google Scholar
Vandenbrouck, F., Valignat, M. P. & Cazabat, A. M. 1999 Thin nematic films: metastability and spinodal dewetting. Phys. Rev. Lett. 82, 26932696.Google Scholar
Witelski, T. P. & Bowen, M. 2003 ADI schemes for higher-order nonlinear diffusion equations. Appl. Numer. Maths 45, 331351.Google Scholar
Wu, Y., Fowlkes, J. D., Rack, P. D., Diez, J. A. & Kondic, L. 2010 On the breakup of patterned nanoscale copper rings into droplets via pulsed-laser-induced dewetting: competing liquid-phase instability and transport mechanisms. Langmuir 26, 1197211979.Google Scholar
Ziherl, P., Podgornik, R. & Z̆umer, S. 2000 Pseudo-casimir structural force drives spinodal dewetting in nematic liquid crystals. Phys. Rev. Lett. 84, 12281231.CrossRefGoogle ScholarPubMed
Ziherl, P. & Z̆umer, S. 2003 Morphology and structure of thin liquid-crystalline films at nematic-isotropic transition. Eur. Phys. J. E 12, 361365.Google ScholarPubMed

Lam et al. supplementary movie 1

Evolution of the film thickness in the reference frame traveling with the linear spreading speed V (4.19). The initial condition is given in (4.1) with an initial film thickness of H0=0.6. Simulation resembles a traveling wave, with a stationary envelope

Download Lam et al. supplementary movie 1(Video)
Video 28.8 MB

Lam et al. supplementary movie 2

Evolution of the film thickness in the reference frame traveling with the linear spreading speed V (4.19). The initial condition is given in (4.1) with an initial film thickness of H0=0.24. Note that the oscillations ahead of the drop grow in magnitude before reaching some threshold value, initiating dewetting.

Download Lam et al. supplementary movie 2(Video)
Video 22.6 MB

Lam et al. supplementary movie 3

Evolution of the film thickness in the reference frame traveling with the linear spreading speed V (4.19). The initial condition is given in (4.1) with an initial film thickness of H0=0.15. A subtype of the R II regime, however, the front (eventually) alternates between two different breakup times, tMSC, and height of drop centers, Hl.

Download Lam et al. supplementary movie 3(Video)
Video 24.6 MB

Lam et al. supplementary movie 4

Evolution of the film thickness in the reference frame traveling with the linear spreading speed V (4.19). The initial condition is given in (4.1) with an initial film thickness of H0=0.45. Simulation resembles thin films in the R I regime. However, the expanding wave packet is sporadically interrupted.

Download Lam et al. supplementary movie 4(Video)
Video 27.8 MB